Reduction and Improvement Strategy of Training Sample Set for SVM
Based on Class-Center
Pang Shouyan1,2,Chen Song1,Wei Jianmeng1,Zhang Yuansheng1
1. School of Information Science & Engineering,Chongqing Jiaotong University,Chongqing 400074,China;
2. Chongqing University of Education,Chongqing 400065,China
Pang Shouyan,Chen Song,Wei Jianmeng,Zhang Yuansheng. Reduction and Improvement Strategy of Training Sample Set for SVM
Based on Class-Center[J]. Journal of Chongqing Jiaotong University(Natural Science), 2014, 33(2): 154-158.
[1] 奉国和,李拥军,朱思铭. 边界临近支持向量机[J].计算机应用研究,2006( 4) : 11-12.
Feng Guohe,Li Yongjun,Zhu Siming. Boundary nearest support vector machines [J].Application Research of Computers,2006( 4) : 11-12.
[2] Cortes C,Vapnik V. Support-vector networks [J]. Machine Learning,1995, 20( 3) : 273-297.
[3] Osuna E,Freund R,Girosi F. An improved training algorithm for support vector machines[C] / / Principe J,Gile L,Morgan N, et al.Neural Networks for Signal Processing Ⅶ. Amelia Island,F L: Proceedings
of the 1997 IEEE Workshop,1997: 276-285.
[4] Platt J C. Fast training of support vector machines using sequentia1 minima1 optimization[C] / /Schlkopf B,Burges C J C,Smola A J.Advances in Kernel Methods-Support Vector Learning. Cambridge:
MIT Press, 1998: 185-208.
[5] Platt J C. Using analytic QP and sparseness to speed training of support vector machines [C] / /Kearns M S,Solla S A,Cohn D A. Advances in Neural Information Processing Systems. Cambridge: MIT
Press, 1999: 557-563.
[6] 焦李成,张莉,周伟达. 支撑矢量预选取的中心距离比值法[J].电子学报, 2001, 29( 3) : 383-386.
Jiao Licheng,Zhang Li,Zhou Weida. Pre-extracting support vectors for support vector machine [J].Chinese Journal of Electronics,2001, 29 ( 3) : 383-386.
[7] 汪西莉,焦李成. 一种基于马氏距离的支持向量快速提取算法[J].西安电子科技大学学报: 自然科学版,2004,31 ( 4 ) : 639-643.
Wang Xili, Jiao Licheng. A fast algorithm for extracting the support vector on the mahalanobis distance [J]. Journal of Xidian University: Natural Science, 2004,31( 4) : 639-643.
[8] 李青,焦李成,周伟达. 基于向量投影的支撑向量预选取[J].计算机学报,2005,28( 2) : 145-152.
Li Qing, Jiao Licheng,Zhou Weida. Pre-extracting support vector for support vector machine based on vector projection [J] . Chinese Journal of Computers, 2005, 28( 2) : 145-152.
[9] 李红莲,王春花,袁保宗. 一种改进的支持向量机NN_SVM[J].计算机学报, 2003, 26( 8) : 1015-1020.
Li Honglian,Wang Chunhua,Yuan Baozong. An improved SVM: NN_SVM [J].Chinese Journal of Computers,2003,26 ( 8 ) : 1015-1020.
[10] 郭亚琴,王正群. 一种改进的支持向量机BS_SVM[J].微电子学与计算机, 2010, 27( 6) : 54-56.
Guo Yaqin,Wang Zhengqun. An improved SVM: BS _SVM [J].Microelectronics & Computer,2010, 27( 6) : 54-56.
[11] 朱方,顾军华,杨欣伟,等. 一种新的支持向量机大规模训练样本集缩减策略[J] . 计算机应用,2009,29( 10) : 2736-2740.
Zhu Fang,Gu Junhua,Yang Xinwei, et al. New reduction strategy of large-scale training sample set for SVM [J].Journal of Computer Applications, 2009, 29( 10) : 2736-2740.
[12] 罗瑜. 支持向量机在机器学习中的应用研究[D] . 成都: 西南交通大学,2007.
Luo Yu. Study on Application of Machine Learning Based on Support Vector Machine[D] . Chengdu: Southwest Jiaotong University,2007.
[13] 曹淑娟,刘小茂,张钧,等. 基于类中心思想的去边缘模糊支持向量机[J] . 计算机工程与应用, 2006, 42( 22) : 146-149.
Cao Shujuan,Liu Xiaomao,Zhang Jun,et al. Fuzzy support vector machine of dismissing margin based on the method of class-center[J] . Computer Engineering and Applications, 2006,42( 22) : 146-149.