中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

Journal of Chongqing Jiaotong University(Natural Science) ›› 2018, Vol. 37 ›› Issue (12): 98-104.DOI: 10.3969/j.issn.1674-0696.2018.12.15

• Traffic & Transportation Engineering • Previous Articles     Next Articles

Evaluation of Public Bicycle Service Quality Based on SERVPERF Model

MA Shuhong1, MA Jinlei1, WANG Yuanqing1, HAN Sunsheng2   

  1. (1. School of Highway, Changan University, Xian 710064, Shaanxi, P. R. China; 2. Deptartment of Architecture, Construction & Planning, University of Melbourne, Melbourne, VIC 3010, Australia)
  • Received:2017-05-03 Revised:2017-12-12 Online:2018-12-09 Published:2020-07-10

基于SERVPERF模型的公共自行车服务质量评价研究

马书红1,马金磊1,王元庆1,韩笋生2   

  1. (1. 长安大学 公路学院,陕西 西安 710064; 2. 墨尔本大学 建筑、建设与规划系, 墨尔本 VIC 3010, 澳大利亚)
  • 作者简介:马书红(1975—),女,河北藁城人,副教授,主要研究方向为交通规划、交通经济。E-mail:msh@chd.edu.cn。
  • 基金资助:
    国家社会科学基金项目(16BJY117)

Abstract: Based on the importance degree of users attention to public bicycle system, a corresponding service evaluation system was established by combining the characteristics of public bicycle and the related factors that affected users choice. Through the form of questionnaire, the SERVPERF model was combined with IPA method to evaluate the service quality of Xian public bicycle. The results show that the reliability and validity of the questionnaire are reliable; the passengers are basically satisfied with the service of public bicycle system in Xian. At the same time, the grey relational degree analysis is used to evaluate and rank the service quality of partition objectively, which provides suggestions for improving the service quality of public bicycle system.

Key words: traffic engineering, public bicycle system, service quality evaluation, SERVPERF model, IPA method, gray relation theory

摘要: 以使用者对公共自行车系统关注因素的重要程度为基础,结合公共自行车自身特性和影响使用者选择的相关因素建立相应的服务评价体系。通过问卷调查 的形式,将SERVPERF模型与IPA法相结合以评价西安市公共自行车服务质量,结果显示问卷的信度和效度可靠,居民对西安市公共自行车系统服务基本满意;利用 灰色关联度分析对分区服务质量进行较为客观的评价并排序,为公共自行车系统服务质量的改善提供建议。

关键词: 交通工程, 公共自行车系统, 服务质量评价, SERVPERF模型, IPA法, 灰色关联度分析

CLC Number: