中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

Journal of Chongqing Jiaotong University(Natural Science) ›› 2021, Vol. 40 ›› Issue (06): 7-11.DOI: 10.3969/j.issn.1674-0696.2021.06.02

• Transport+Big Data and Artificial Intelligence • Previous Articles     Next Articles

Identification of Road Section Congestion Influence Based on Bijective Soft Decision Theory

XU Maozeng, ZHANG Li   

  1. (School of Economics and Management, Chongqing Jiaotong University, Chongqing 400074, China)
  • Received:2020-11-01 Revised:2021-03-19 Online:2021-06-19 Published:2021-06-24

基于双射软决策理论的路段拥堵影响力识别

许茂增,张莉   

  1. (重庆交通大学 经济与管理学院,重庆 400074)
  • 作者简介:许茂增(1960—),男,陕西大荔人,教授,博士生导师,主要从事交通运营管理和供应链管理研究。E-mail:xmzzrxhy@cqjtu.edu.cn 通信作者:张莉(1978—),女,江苏镇江人,副教授,博士研究生,主要从事交通大数据应用研究。E-mail:elisazl@163.com
  • 基金资助:
    国家自然科学基金项目(71871034,71871035,71471024)

Abstract: In order to describe the impact of road section on the overall traffic, the congestion influence index and its calculation method were proposed, and a computing framework based on bijective soft decision theory and real-time road map data was established. Taking the Baidu real-time traffic map of Chongqings Four-Kilometer Interchange from December 9 to 31, 2018 as the sample sequence, a case study was carried out. The results show that the congestion influence index can be used to describe the important attributes of urban road traffic state; and through the discrete traffic state information in the real-time road map, the analysis framework of the bijective soft decision theory can quickly obtain the influence of road congestion, which can be used as a powerful supplement to identify the severity of road section congestion.

Key words: traffic engineering, urban road network management, real-time traffic map, road section congestion influence

摘要: 为了刻画路段对整体交通的影响,提出了拥堵影响力指标及其计算方法;建立了基于双射软决策理论和实时路况地图数据的计算框架;以重庆市四公里立交2018年12月9—31日的百度实时路况地图为样本序列进行了实例研究。结果表明:拥堵影响力指标可以用来描述城市路段交通状态的重要属性;根据实时路况地图中的离散化交通状态信息,应用双射软决策理论的分析框架能够迅速获取路段拥堵影响力,结果可作为识别路段拥堵严重程度的有力补充。

关键词: 交通工程, 城市路网管理, 实时路况地图, 路段拥堵影响力

CLC Number: