[1] 查茜. 港口集装箱吞吐量时间序列预测方法研究[D]. 重庆:重庆大学,2016.
ZHA Xi. Research on Container Throughput Time Series Forecasting Methods [D]. Chongqing:Chongqing University, 2016.
[2] 刘宇璐,陈冬林. 基于ARIMA模型的武汉港货物吞吐量预测研究[J]. 中国水运,2016,37 (10): 45-47.
LIU Yulu, CHEN Donglin. Research on Wuhan port cargo throughput forecast based on ARIMA model[J].China Water Transport,2016,37(10): 45-47.
[3] 陈昌源,戴冉,杨婷婷,等. 基于改进GM(1,1)模型的上海港集装箱吞吐量预测[J]. 船海工程, 2016, 45(4): 153-156,161.
CHEN Changyuan, DAI Ran, YANG Tingting, et al. Study on container throughput prediction of Shanghai port based on improved GM(1,1) model [J].Ship and Ocean Engineering,2016, 45(4): 153-156,161.
[4] 陈宁,朱美琪,余珍文. 基于对数二次指数平滑的港口吞吐量预测[J]. 武汉理工大学学报,2005,27(9): 77-79.
CHEN Ning, ZHU Meiqi, YU Zhenwen. Comparing two forecast models of ports handling capacity [J].Journal of Wuhan University of Technology,2005,27(9): 77-79.
[5] 李广儒,朱庆辉. 基于Elman神经网络的港口货物吞吐量预测[J]. 重庆交通大学学报(自然科学版),2020, 39(6): 8-12.
LI Guangru, ZHU Qinghui. Forecasting of port cargo throughput based on Elman neural network [J].Journal of Chongqing Jiaotong University (Natural Science),2020, 39(6): 8-12.
[6] 蒲悦逸,王文涵,朱强,等. 基于CNN-ResNet-LSTM模型的城市短时交通流量预测算法[J]. 北京邮电大学学报,2020,43(5): 9-14.
PU Yueyi, WANG Wenhan, ZHU Qiang, et al. Urban short-Term traffic flow prediction algorithm based on CNN-ResNet-LSTM model[J].Journal of Beijing University of Posts and Telecommunications,2020,43(5): 9-14.
[7] 连静,王欣然,李琳辉,等. 基于人-车交互的行人轨迹预测[J]. 中国公路学报,2021, 34(5): 215-223.
LIAN Jing, WANG Xinran, LI Linhui, et al. Pedestrian trajectory prediction based on human-vehicle interaction[J].China Journal of Highway and Transport,2021, 34(5): 215-223.
[8] YAN Haoran,QIN Yi, XIANG Sheng, et al. Long-term gear life predic-tion based on ordered neurons LSTM neural networks[J]. Measurement, 2020, 165: 108205.
[9] 张冬雪. 基于LSTM和ARIMA的风速时间序列预测研究[D]. 兰州:兰州大学,2020.
ZHANG Dongxue.Prediction of Wind Speed Time Series Based on LSTM and ARIMA[D]. Lanzhou:Lanzhou University, 2020.
[10] 杨丽,吴雨茜,王俊丽,等. 循环神经网络研究综述[J].计算机应用,2018,38(增刊2):1-6,26.
YANG Li, WU Yuqian, WANG Junli, et al. Research on recurrent neural network [J]. Journal of Computer Applications,2018,38(Sup 2):1-6,26.
[11] 韩以伦,徐新新. 基于ARIMA和GM模型的青岛港货物吞吐量预测研究[J].水道港口,2019,40(2):241-248.
HAN Yilun, XU Xinxin. Research on cargo throughput forecast of Qingdao port based on ARIMA and GM [J].Journal of Waterway and Harbor, 2019,40(2):241-248.
[12] 薛艳茹. 基于时间序列分析的散杂货港口吞吐量短期预测研究[D]. 北京:北京交通大学, 2019.
XUE Yanru.Short-term Prediction of Bulk Cargo Port Throughput Based on Time Series Analysis [D]. Beijing :Beijing Jiaotong University, 2019.
[13] 李桂芝,白秋颖. 基于系统聚类的营口港吞吐量影响因素分析[J]. 物流技术, 2015, 34(1): 189-191.
LI Guizhi, BAI Qiuying. Analysis of factors influencing throughput of Yingkou port based on system clustering [J].Logistics Technology. 2015, 34(1): 189-191.
[14] 杨思凡,魏梦,丁蓉. 基于多因素选择和误差修正的BP神经网络港口货物吞吐量预测[J]. 价值工程, 2020, 39(18): 68-71.
YANG Sifan, WEI Meng, DING Rong. Prediction of port cargo throughput based on BP neural network with multi-factor and error correction [J].Value Engineering, 2020, 39(18): 68-71. |