[1] 杨金花,杨艺.基于灰色模型的上海港集装箱吞吐量预测[J].上海海事大学学报,2014,35(2):28-32.
YANG Jinhua, YANG Yi. Container throughput forecast of Shanghai port based on grey model[J]. Journal of Shanghai Maritime University, 2014, 35(2): 28-32.
[2] 赵尚威,周建红.中国港口集装箱吞吐量预测:基于组合时间序列[J].系统科学与数学,2018,38(2):210-219.
ZHAO Shangwei, ZHOU Jianhong. Forecasting Chinese Ports container throughput: A combining time series[J]. Journal of Systems Science and Mathematical Sciences, 2018, 38(2): 210-219.
[3] 高嵩,肖青.基于组合模型的天津港吞吐量预测[J].水运工程,2011(4):54-57.
GAO Song, XIAO Qing. Throughput forecast of Tianjin port based on combined model[J]. Port & Waterway Engineering, 2011(4): 54-57.
[4] 刘枚莲,朱美华.基于BP神经网络的港口吞吐量预测模型[J].系统科学学报,2012,20(4):88-91.
LIU Meilian, ZHU Meihua. The port throughput forecast model based on the BP neural network[J]. Chinese Journal of Systems Science, 2012, 20(4):88-91.
[5] 刘长俭,张庆年.基于时间序列BP神经网络的集装箱吞吐量动态预测[J].水运工程,2007(01):4-7.
LIU Changjian, ZHANG Qingnian. Dynamic prediction of container throughput based on the time series BP neural network (BP NN)[J]. Port & Waterway Engineering, 2007(1):4-7.
[6] 李季涛,马彩雯,孙光祈.基于RBF神经网络的港口集装箱吞吐量动态预测[J].大连交通大学学报,200804):27-32.
LI Jitao, MA Caiwen, SUN Guangqi. Dynamic prediction of port container throughput based on RBF neural network[J]. Journal of Dalian Jiaotong University, 2008(4):27-32.
[7] 杨珩,崔洋.基于Elman神经网络的上海港货物吞吐量预测研究[J].交通科技,2012(4):133-136.
YANG Heng, CUI Yang. Prediction of cargo throughput in Shanghai port based on elman neural network[J]. Transportation Science and Technology, 2012(4):133-136.
[8] 梅贵琴.改进的Elman神经网络和网络参数优化算法研究[D].重庆:西南大学,2017.
MEI Guiqin.The Research on Improved Elman Neural Network and Parameter Optimization Algorithm[D]. Chongqing: Southwest University,2017.
[9] ELMAN J L. Finding structure in time[J]. Cognitive Science, 1990, 14(2):179-211.
[10] 时小虎.Elman神经网络与进化算法的若干理论研究及应用[D].长春:吉林大学,2006.
SHI Xiaohu. Some Theoretical Studies of Elman Neural Networks and Evolutionary Algorithms and Their Applications[D]. Changchun: Jilin University, 2006.
[11] 潘红宇,赵云红,张卫东,等.基于Adaboost的改进BP神经网络地表沉陷预测[J].煤炭科学技术,2019,47(2):161-167.
PAN Hongyu, ZHAO Yunhong,ZHANG Weidong, et al. Prediction of surface subsidence with improved BP neural network based on Adaboost[J]. Coal Science and Technology, 2019, 47(2):161-167.
[12] WU H, ZOU B J, ZHAO Y Q, et al. An automatic video text detection method based on BP-Adaboost[J]. Multimedia Tools & Applications, 2016, 75(13):1-24.
[13] 王改革,郭立红,段红,等.基于Elman_AdaBoost强预测器的目标威胁评估模型及算法[J].电子学报,2012,40(5):901-906.
WANG Gaige, GUO Lihong, DUAN Hong, et al. The model and algorithm for the target threat assessment based on Elman_AdaBoost strong predictor[J]. Acta Electronica Sinica, 2012, 40(5):901-906.
[14] 芦婧,曾明.短期风速的Adaboost_GRNN组合预测模型[J].电力系统及其自动化学报,2019,31(4):70-76.
LU Jing, ZENG Ming. Adaboost_GRNN combination forecasting model for short-term wind speed[J]. Proceedings of the CSU-EPSA, 2019, 31(4):70-76.
[15] 朱晨飞,黄淑华,王怀聪,等.一种改进的BP-AdaBoost算法及应用研究[J].现代电子技术,2019,42(19):64-67.
ZHU Chenfei, HUANG Shuhua, WANG Huaicong, et al. Study of the improved BP-AdaBoost algorithm and application[J]. Modern Electronics Technique, 2019, 42(19):64-67. |