[1] 管子豪.高速公路沥青路面使用性能预测及预防养护决策研究[D]. 西安:长安大学,2019.
GUAN Zihao. Research on Performance Prediction and Prevention and Maintenance Decision of Highway Asphalt Pavement [D]. Xian: Changan University, 2019.
[2] BUTT A A, SHAHIN M Y, CARPENTER S H, et al. Application of Markov process to pavement management systems at network level [C] // The Third International Conference on Managing Pavement, Washington D.C., 1994.
[3] JOHNSON K D, CATION K A.Performance Prediction Development Using Three Indexes for North Dakota Pavement Management Systems [R]. Washington D.C.: Transportation Research Board, 1992.
[4] ABAZA K A. Empirical Markovian-based models for rehabilitated pavement performance used in a life cycle analysis approach [J]. Structure and Infrastructure Engineering, 2017, 13(5): 625-636.
[5] HOSSAIN M I, GOPISETTI L S P, MIAH M S. Internationalroughness index prediction of flexible pavements using neural networks [J]. Journal of Transportation Engineering, Part B: Pavements, 2019, 145(1): 04018058.
[6] BIANCHINI A, BANDINI P. Prediction ofpavement performance through neuro-fuzzy reasoning [J]. Computer-Aided Civil and Infrastructure Engineering, 2010, 25(1): 39-54.
[7] 于晓贺,邱怀中,罗蓉,等.基于修正灰色预测模型的沥青路面使用性能预测[J].武汉理工大学学报(交通科学与工程版),2021,45(1):59-63.
YU Xiaohe, QIU Huaizhong, LUO Rong, et al. Prediction of asphalt pavement performance based on modified grey prediction model [J]. Journal of Wuhan University of Technology (Transportation Science and Engineering), 2021, 45(1): 59-63.
[8] 赵静,吴旺杰,王选仓,等.基于等维灰数递补模型的路面性能预测方法[J].深圳大学学报(理工版),2019,36(6):628-634.
ZHAO Jing, WU Wangjie, WANG Xuancang, et al. Prediction method of pavement performance based on same dimension gray recurrence dynamic model [J]. Journal of Shenzhen University (Science and Technology), 2019, 36(6): 628-634.
[9] 李海莲,林梦凯,王起才.基于IFA-SVM的高速公路沥青路面使用性能预测[J].公路交通科技,2019,36(12):8-14,78.
LI Hailian, LIN Mengkai, WANG Qicai. Prediction of performance of expressway asphalt pavement based on IFA-SVM [J]. Journal of Highway and Transportation Research and Development, 2019, 36(12): 8-14,78.
[10] 王笑风,毛海臻,杨博,等.基于深度学习LSTM网络的沥青路面性能预测研究[J].公路交通科技(应用技术版),2020,16(8):4-7.
WANG Xiaofeng, MAO Haizhen, YANG Bo, et al. Research on asphalt pavement performance prediction based on deep learning LSTM network [J]. Journal of Highway and Transportation Research and Development (Applied Technology Edition), 2020, 16(8): 4-7.
[11] 赵静,王选仓,丁龙亭,等.基于灰色关联度分析和支持向量机回归的沥青路面使用性能预测[J].重庆大学学报,2019,42(4):72-81.
ZHAO Jing, WANG Xuancang, DING Longting, et al. Performance prediction of asphalt pavement based on grey relational analysis and support vector machine regression [J]. Journal of Chongqing University, 2019, 42(4): 72-81.
[12] 陈仕周,李山,熊峰,等.基于GA-灰色神经网络的沥青路面使用性能预测[J].重庆交通大学学报(自然科学版),2019,38(2):44-50.
CHEN Shizhou, LI Shan, XIONG Feng, et al. Forecasting of asphalt pavement performance based on GA-grey neural network [J]. Journal of Chongqing Jiaotong University (Natural Science), 2019, 38(2): 44-50.
[13] 杨国峰,王浩仰,潘玉利.基于混合效应模型的沥青路面使用性能预测[J].公路交通科技,2018,35(8):19-27.
YANG Guofeng, WANG Haoyang, PAN Yuli. Prediction of asphalt pavement performance based on mixed effect model [J]. Journal of Highway and Transportation Research and Development, 2018, 35(8):19-27.
[14] 孔令云,尹果果,林雄伟,等.基于集料力学指标的沥青路面抗滑性能衰减模型[J].长沙理工大学学报(自然科学版),2017,14(3):13-20.
KONG Lingyun, YIN Guoguo, LIN Xiongwei, et al. Anti-sliding performance attenuation model of asphalt pavement based on aggregate mechanical index [J]. Journal of Changsha University of Science and Technology (Natural Science), 2017, 14(3):13-20.
[15] 陈勇,李鹏,张忠军,等.基于PCA-GA-LSSVM的输电线路覆冰负荷在线预测模型[J].电力系统保护与控制,2019,47(10):110-119.
CHEN Yong, LI Peng, ZHANG Zhongjun, et al. Online prediction model for power transmission line icing load based on PCA-GA-LSSVM[J]. Power System Protection and Control, 2019, 47(10): 110-119.
[16] 王彦彬.基于PCA-PSO-ELM的瓦斯涌出量预测[J].湖南科技大学学报(自然科学版),2020,35(4):1-9.
WANG Yanbin. Prediction of gas emission based on PCA-PSO-ELM [J]. Journal of Hunan University of Science and Technology (Natural Science Edition), 2020, 35(4):1-9.
[17] HOFFMANN A, STANKO M E. Real-time production optimization of a production network with ESP-boosted wells: A case study [C] // SPE Middle East Artificial Lift Conference and Exhibition, Manama, Kingdom of Bahrain,2016.
[18] ABDELAZIZ M, LASTRA R, XIAO JJ. ESP data analytics: Predicting failures for improved production performance [C] // Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, 2017.
[19] DRUCKER H, BURGES C J C, KAUFMAN L, et al. Support vector regression machines [C] // Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 1997, 9: 155-161.
[20] LI Zhi, YE Lin, ZHAO Yongning, et al. Short-term wind power prediction based on extreme learning machine with error correction [J]. Protection and Control of Modern Power Systems, 2016, 1:1.
[21] 王帅伟,于少将,李绍康,等.基于RS-PCA-GA-SVM的砂土液化预测方法研究[J].地震工程学报,2019,41(2):445-453.
WANG Shuaiwei, YU Shaojiang, LI Shaokang, et al. A method of predicting sand liquefaction based on RS-PCA-GA-SVM [J]. China Earthquake Engineering Journal, 2019, 41(2): 445-453.
[22] 袁颖,李绍康,周爱红.基于PCA-GA-SVM的火成岩分类方法研究[J].数学的实践与认识,2017,47(12):121-128.
YUAN Ying, LI Shaokang, ZHOU Aihong. Study on the classification method of igneous rocks based on PCA-GA-SVM [J]. Mathematics in Practice and Theory, 2017, 47(12): 121-128. |