中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

Journal of Chongqing Jiaotong University(Natural Science) ›› 2023, Vol. 42 ›› Issue (5): 35-43.DOI: 10.3969/j.issn.1674-0696.2023.05.05

• Transportation+Big Data & Artificial Intelligence • Previous Articles    

Driving Quality Prediction of Highway Asphalt Pavement Based on PCA-GA-LSSVMR

CAO Xuejuan1, LI Xiaoyu1, WU Bowen2, HAO Zengheng3   

  1. (1. School of Materials Science & Engineering, Chongqing Jiaotong University, Chongqing 400074, China; 2. School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China; 3. Chongqing Zhixiang Paving Technology Engineering Co., Ltd., Chongqing 400067, China)
  • Received:2021-04-07 Revised:2022-02-28 Published:2023-07-13

基于PCA-GA-LSSVMR的高速公路沥青路面行驶质量预测

曹雪娟1,李小宇1,吴博文2,郝增恒3   

  1. (1.重庆交通大学 材料科学与工程学院,重庆 400074;2.重庆交通大学 土木工程学院,重庆 400074; 3.重庆市智翔铺道技术工程有限公司,重庆 400067)
  • 作者简介:曹雪娟(1979—),女,四川邻水人,教授,博士,主要从事道路材料方面的研究。E-mail: caoxuejuan79@foxmail.com 通信作者:李小宇(1997—),男,山东肥城人,硕士研究生,主要从事道路养护预测与新型路面材料方面的研究。E-mail:1807215114@qq.com
  • 基金资助:
    重庆市研究生联合培养基地建设项目(JDLHPYJD2018006)

Abstract: To realize accurate prediction of highway driving quality and save maintenance cost, in the context of machine learning theory, a PCA-GA-LSSVMR-based prediction model for driving quality of highway was proposed based on historical pavement performance data. Firstly, the box plot analysis method and min-max standardization method were used to pre-process the road performance data, screen out abnormal data and normalize the data to ensure the reliability of data quality. Then the PCA-GA-LSSVMR model was used in Rstudio software to predict the driving quality and compared with the SVMR model and PCA-LSSSVMR model. The study shows that the linear regression determination coefficient of the proposed model is 0.835, and the model has the best stability. The root mean square error is 2.394, indicating that the model has the smallest prediction error. The average prediction accuracy of the model is 86%, which can effectively evaluate the driving quality of asphalt pavement.

Key words: highway engineering; prediction of driving quality of asphalt pavement; machine learning

摘要: 为实现对高速公路路面行驶质量的准确预测,节约养护成本,在机器学习理论背景下,以历史路面性能数据为基础,提出一种基于PCA-GA-LSSVMR的高速公路沥青路面行驶质量预测模型。首先采用箱型图分析法和min-max标准化方法对路面性能数据进行预处理,筛选剔除异常数据,并对数据进行归一化处理,保证数据质量的可靠性,然后在Rstudio软件中利用PCA-GA-LSSVMR模型对行驶质量进行预测,并与SVMR模型、PCA-LSSVMR模型进行对比。研究表明:PCA-GA-LSSVMR模型线性回归确定系数为0.835,模型稳定性最好,均方根误差为2.394,预测误差最小,模型平均预测准确率为86%,预测精度较高,能够对沥青路面行驶质量进行有效评估。

关键词: 道路工程;沥青路面行驶质量预测;机器学习

CLC Number: