中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

Journal of Chongqing Jiaotong University(Natural Science) ›› 2023, Vol. 42 ›› Issue (12): 121-128.DOI: 10.3969/j.issn.1674-0696.2023.12.17

• Transportation Infrastructure Engineering • Previous Articles    

Driving Style Recognition of Electric City Bus Entering Stations Based on CNN

ZHAO Dengfeng1, ZHONG Yudong1,LIU Zhaohui2,LI Zhenying2,HOU Junjian1   

  1. (1.Mechanical and Electrical Engineering Institute, Zhengzhou University of Light Industry, Zhengzhou 450002, Henan, China; 2.Technology Research Institute, Yutong Bus Co., Ltd., Zhengzhou 450016, Henan, China)
  • Received:2022-02-14 Revised:2023-04-18 Published:2023-12-26

基于CNN电动城市客车进站驾驶风格识别研究

赵登峰1,钟玉东1,刘朝辉2,李振营2,侯俊剑1   

  1. (1.郑州轻工业大学 机电工程学院,河南 郑州 450002;2.宇通客车股份有限公司 技术研究中心,河南 郑州 450016)
  • 作者简介:赵登峰(1976—),男,河南上蔡人,高级工程师,博士,主要从事新能源与智能网联汽车驾驶人因安全及主动控制技术方面的研究。E-mail:zhaodf@zzuli.edu.cn 通信作者:钟玉东(1990—),男,河南周口人,讲师,博士,主要从事电动汽车性能分析与优化算法方面的研究。E-mail:zhongyd@zzuli.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(62073298)

Abstract: The drivers driving style of electric city bus has an important impact on the safety of urban public transport. In order to identify the driving style of the driver, a feature extraction network composed of convolutional layer and pooling layers was used to deeply fuse and automatically extract multi-channel feature data, by using the onboard CAN data in the process of the drivers natural driving electric city buses entering stations. It seamlessly output to fully connected neural networks for inbound driving style recognition, and an electric city bus driver inbound driving style recognition model was constructed. The research shows that the proposed model can effectively integrate the corresponding time series data of driving behavior and vehicle operation status during the entry process, and automatically extract higher-order features of driving behavior, achieving effective recognition of the driving style of electric city bus drivers entering the station, with an accuracy rate of 98.2%. The research results help to identify drivers with aggressive driving styles, so as to carry out targeted driving safety education and thereby reduce driver-induced electric city bus traffic accidents.

Key words: traffic and transportation engineering; driving style; convolution neural network (CNN); CAN data; electric city bus; driving safety

摘要: 电动城市客车驾驶员的驾驶风格对城市公共交通安全有重要影响。为识别驾驶员的驾驶风格,利用驾驶员自然驾驶电动城市客车进站过程的车载CAN数据,采用由卷积层和池化层组成的特征提取网络对多通道特征数据进行信息深度融合和特征自动提取,无缝输出给全连接神经网络进行进站驾驶风格识别,构建出电动城市客车驾驶员进站驾驶风格识别模型。研究表明,采用建立的模型可以有效融合进站过程中驾驶行为和车辆运行状态对应时序数据并自动提取驾驶行为高阶特征,实现电动城市客车驾驶员进站驾驶风格的有效识别,准确率达到98.2%。研究成果有助于识别出激进型驾驶风格的驾驶员,以便针对性开展驾驶安全教育,进而降低驾驶员致因的电动城市客车交通事故。

关键词: 交通运输工程;驾驶风格;卷积神经网络(CNN);CAN数据;电动城市客车;驾驶安全

CLC Number: