[1] 赵楷文, 张洪伟, 全蔚闻, 等. 沥青路面结构设计指标优化及合理厚度探究[J]. 公路交通科技, 2022, 39(6): 9-16.
ZHAO Kaiwen, ZHANG Hongwei, QUAN Weiwen, et al. Optimization ofdesign indicators and exploration of reasonable thickness of asphalt pavement structure[J]. Journal of Highway and Transportation Research and Development, 2022, 39(6): 9-16.
[2] 陈洪飞, 孙娇娜, 李茜茜. 聚氨酯材料用于提高寒区路面沥青混合料性能分析[J].建筑结构, 2022, 52(增刊1): 1621-1626.
CHEN Hongfei, SUN Jiaona, LI Qianqian. Analysis of polyurethane materials used to improve the performance of asphalt mixes for cold zone pavements[J]. Building Structure, 2022, 52(Sup1): 1621-1626.
[3] 孙娇娜, 陈洪飞, 冯小蓉. 基于坑槽尺寸及施工温度的坑槽修补材料优化设计及其适配性分析[J].建筑结构, 2022, 52(增刊2): 2712-2716.
SUN Jiaona, CHEN Hongfei, FENG Xiaorong. Optimization design and suitability analysis of pit repair materials based on pit groove size and construction temperature[J]. Building Structure, 2022,52(Sup2): 2712-2716.
[4] 张晓萌, 胡超, 朱世超, 等. 基于改扩建工程的路面温度场对沥青混合料动态模量影响规律[J]. 科学技术与工程, 2022, 22(4): 1617-1626.
ZHANG Xiaomeng, HU Chao, ZHU Shichao, et al. Influence ofpave-ment temperature field on dynamic modulus of asphalt mixture based on reconstruction project[J]. Science Technology and Engineering, 2022, 22(4): 1617-1626.
[5] 冯振刚, 焦晓来, 王书娟, 等. 基于体积参数与路用性能的沥青混合料成型温度研究[J]. 重庆交通大学学报(自然科学版), 2022, 41(9): 123-129.
FENG Zhengang, JIAO Xiaolai, WANG Shujuan, et al. Molding tem-perature of asphalt mixture based on volume parameters and road performance[J]. Journal of Chongqing Jiaotong University (Natural Science), 2022, 41(9): 123-129.
[6] 何兆益, 李金凤, 周文, 等. 多孔沥青混合料的动态模量及其预估模型[J]. 吉林大学学报(工学版), 2022, 52(6): 1375-1385.
HE Zhaoyi, LI Jinfeng, ZHOU Wen, et al. Dynamic modulus of porous asphalt concrete and its predictionmodel[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(6): 1375-1385.
[7] 刘克. 含弹性极限的Burgers模型研究[J]. 重庆交通大学学报(自然科学版), 2022, 41(9): 89-94.
LIU Ke. Burgers model with elastic limit[J]. Journal of Chongqing Jiaotong University (Natural Science), 2022, 41(9): 89-94.
[8] LIU Zhen, GU Xingyu, WU Chunying, et al. Studies on the validity of strain sensors for pavement monitoring: A case study for a fiber Bragg grating sensor and resistive sensor[J]. Construction and Building Materials, 2022, 321: 126085.
[9] MA Yunming, WANG Hongchang, ZHAO Kang, et al. Study of a modified time hardening model for the creep consolidation effect of asphalt mixtures[J]. Materials, 2022, 15(8): 2710.
[10] LIU Zhen, GU Xingyu, REN Hua, et al. Analysis of the dynamic responses of asphalt pavement based on full-scale accelerated testing and finite element simulation[J]. Construction and Building Materials, 2022, 325: 126429.
[11] 张蕾, 周兴业, 王旭东. 基于RIOHTrack足尺加速加载试验的长寿命沥青路面行为研究进展[J]. 科学通报, 2020, 65(30): 3247-3258.
ZHANG Lei, ZHOU Xingye, WANG Xudong. Research progress of long-life asphalt pavement behavior based on the RIOHTrack full-scale accelerated loading test[J].Chinese Science Bulletin, 2020, 65(30): 3247-3258.
[12] LIU Zhen, GU Xingyu, REN Hua, et al. Three-dimensional finite element analysis for structural parameters of asphalt pavement: A combined laboratory and field accelerated testing approach[J]. Case Studies in Construction Materials, 2022, 17: e01221.
[13] 叶永, 陈洪凯. 沥青混合料黏塑性变形的不同形式描述[J]. 重庆交通大学学报(自然科学版), 2014, 33(3): 45-48.
YE Yong, CHEN Hongkai. Different modes of viscoplastic deformation behavior for asphalt mixtures[J]. Journal of Chongqing Jiaotong University (Natural Science), 2014, 33(3): 45-48.
[14] LIU Zhen, GU Xingyu, REN Hua. Rutting prediction of asphalt pavement with semi-rigid base: Numerical modeling on laboratory to accelerated pavement testing[J]. Construction and Building Materials, 2023, 375: 130903.
[15] LIU Zhen, GU Xingyu. Performance evaluation of full-scale accelerated pavement using NDT and laboratory tests: A case study in Jiangsu, China[J]. Case Studies in Construction Materials, 2023, 18: e02083. |