中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

重庆交通大学学报(自然科学版) ›› 2025, Vol. 44 ›› Issue (1): 86-95.DOI: 10.3969/j.issn.1674-0696.2025.01.11

• 交通+大数据人工智能 • 上一篇    

海运通道韧性评价与关键因素识别

吕靖,王佳鑫,范瀚文   

  1. (大连海事大学 交通运输工程学院,辽宁 大连 116026)
  • 收稿日期:2024-07-01 修回日期:2024-09-04 发布日期:2025-01-20
  • 作者简介:吕靖(1959—),男,黑龙江五常人,教授,主要从事交通运输规划与管理方面的研究。E-mail:lujing@dlmu.edu.cn 通信作者:范瀚文(1997—),男,辽宁本溪人,博士研究生,主要从事海上通道安全方面的研究。E-mail:hwfan@dlmu.edu.cn
  • 基金资助:
    国家自然科学基金项目(71974023);国家社科基金研究专项(19VHQ012)

Resilience Evaluation and Key Factors Identification of Sea Lanes

LÜ Jing, WANG Jiaxin, FAN Hanwen   

  1. (College of Transportation Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China)
  • Received:2024-07-01 Revised:2024-09-04 Published:2025-01-20

摘要: 海运通道的安全和畅通是海运业稳定发展的核心保障。为科学评估海运通道的韧性水平,提出了一种基于主成分分析、模糊逻辑和贝叶斯网络模型的韧性评估框架。首先,通过分析相关事故报告和文献,基于双重驱动视角识别了影响海运通道韧性水平的关键因素。其次,为弥补影响因素之间相互关联的缺陷并充分挖掘样本信息,采用主成分分析对初始指标进行筛选。最后,将主成分分析得到的指标权重作为贝叶斯网络中影响因素相互关系的定量输入,从而兼顾了影响因素的重要性,并有效克服了传统贝叶斯网络中忽视指标重要度的缺陷。研究表明,该韧性评估框架相较于其他评价方法能够更为有效地测量海运通道的韧性水平,为海运通道韧性评价提供了重要的理论依据和决策参考。

关键词: 交通运输工程;海运通道;贝叶斯网络;因素识别;主成分分析;韧性

Abstract: The safety and unimpeded passage of sea lanes is the core guarantee for the stable development of the maritime transport industry. In order to evaluate the resilience level of sea lanes scientifically, a resilience evaluation framework based on principal component analysis, fuzzy logic and Bayesian network model was proposed. Firstly, by analyzing the relevant accident reports and literature, the key factors affecting the resilience level of sea lanes was identified on the basis of the dually driven perspective. Then, in order to make up for the defects of the correlation between the influencing factors and fully mine the sample information, principal component analysis was used to screen the initial indexes. Finally, the index weights obtained by principal component analysis were used as the quantitative input of the interrelationships between influencing factors in Bayesian networks, thus taking into account the importance of influencing factors and effectively overcoming the defect of ignoring the importance of indexes in traditional Bayesian networks. The research results show that the proposed resilience evaluation framework can measure the resilience level of sea lanes more effectively than other evaluation methods do, which provides an important theoretical basis and decision-making reference for the resilience evaluation of sea lanes.

Key words: traffic and transportation engineering; sea lanes; Bayesian network; factor identification; principal component analysis; resilience

中图分类号: