中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

重庆交通大学学报(自然科学版) ›› 2025, Vol. 44 ›› Issue (8): 108-115.DOI: 10.3969/j.issn.1674-0696.2025.08.14

• 交通+大数据人工智能 • 上一篇    

基于CPSO算法改进GM-Markov模型的港口货物吞吐量预测

陈丹涌1,王俞亮1,曾枫泓1,吴承禧2   

  1. (1.广州航海学院 航运学院,广东 广州 510725;2. 新加坡国立大学 工业系统工程与管理系,新加坡 119077)
  • 收稿日期:2024-10-08 修回日期:2025-02-28 发布日期:2025-09-05
  • 作者简介:陈丹涌(1972—),男,广东潮州人,副教授,硕士,主要从事交通信息工程与控制方面研究。E-mail:1078876425@qq.com 通信作者:吴承禧(2002—),男,广东揭阳人,硕士研究生,主要从事海事技术与管理方面研究。E-mail:wuchengxi@u.nus.edu

Port Cargo Throughput Forecasting Based on CPSO Algorithm Improved GM-Markov Model

CHEN Danyong1, WANG Yuliang1, ZENG Fenghong1, WU Chengxi2   

  1. (1. School of Shipping and Maritime Studies, Guangzhou Maritime University, Guangzhou 510725,Guangdong, China; 2. Department of Industrial Systems Engineering and Management, National University of Singapore, Singapore 119077, Singapore)
  • Received:2024-10-08 Revised:2025-02-28 Published:2025-09-05

摘要: 针对广东揭阳港惠来港区货物吞吐量的非线性动态预测需求,提出一种基于混沌粒子群优化的GM-Markov组合预测模型。通过集成灰色GM(1,1)模型与Markov链的优势,采用Logistic映射实现粒子群参数与状态区间的混沌初始化,构建具有动态适应能力的预测框架;改进后的模型通过状态空间划分与独立概率转移矩阵计算,有效验证了港区2007—2022年吞吐量数据的随机波动特征。研究结果表明:优化模型将平均绝对百分比误差下降至8.06%,较传统方法显著提升了预测精度与稳定性,验证了该模型在动态系统预测中的工程适用性。

关键词: 交通运输工程;灰色马尔可夫理论;混沌粒子群优化算法;惠来港区;货物吞吐量预测

Abstract: To address the nonlinear dynamic prediction requirements for cargo throughput in Huilai Port area, Jieyang Port in Guangdong Province, a GM-Markov combined prediction model based on chaotic particle swarm optimization was proposed. By integrating the advantages of the grey GM (1,1) model and Markov chain, Logistic mapping was employed to achieve chaotic initialization of particle swarm parameters and state intervals, and a prediction framework with dynamic adaptability was established. The improved model effectively verified the random fluctuation characteristics of throughput data in the port area from 2007 to 2022 through state space partitioning and independent probability transition matrix calculation. The research results demonstrate that the optimized model reduces the mean absolute percentage error (MAPE) to 8.06%, which significantly enhances the prediction accuracy and stability, compared to traditional methods. The engineering applicability of the proposed model in dynamic system forecasting is also verified.

Key words: traffic and transportation engineering; grey-Markov theory; chaos particle swarm optimization algorithm; Huilai Port area; cargo throughput forecasting

中图分类号: