中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

重庆交通大学学报(自然科学版) ›› 2025, Vol. 44 ›› Issue (6): 115-122.DOI: 10.3969/j.issn.1674-0696.2025.06.12

• 桥梁与隧道工程 • 上一篇    

基于模块化爬壁机器人和改进DeepLabv3+的桥墩裂缝检测研究

董绍江,尹玉柱,吕振鸣,张佳伟   

  1. (重庆交通大学 机电与车辆工程学院,重庆 400074)
  • 收稿日期:2024-07-01 修回日期:2025-04-03 发布日期:2025-06-30
  • 作者简介:董绍江(1982—)男,山东烟台人,教授,博士,主要从事特种机器人方面的研究。E-mail:dongshaojiang100@163.com 通信作者:尹玉柱(1997—)男,河南周口人,硕士研究生,主要从事特种机器人方面的研究。E-mail:622220040002@mails.cqjtu.edu.cn
  • 基金资助:
    重庆市教委科学技术研究项目(KJZD-K202300711);重庆市科技创新领军人才支持计划项目(CSTCCCXLJRC201920);重庆市高校创新研究群体项目(CXQT20019)

Pier Crack Detection Based on Modular Wall-Climbing Robots and Improved DeepLabv3+

DONG Shaojiang,YIN Yuzhu,LYU Zhenming,ZHANG Jiawei   

  1. (School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China)
  • Received:2024-07-01 Revised:2025-04-03 Published:2025-06-30

摘要: 针对大型混凝土桥梁桥墩结构表面裂缝存在连续性差、背景干扰大,且一般深度学习裂缝检测模型参数量大等问题,为安全、快速、准确地检测壁面裂缝,笔者提出了一种改进的轻量化DeepLabv3+裂缝分割模型与模块化爬壁机器人相结合的检测方案。以模块化爬壁机器人为载体,通过各模块的自组式连接实现在复杂环境的爬行驱动,搭载图像采集设备进行桥墩表观病害数据采集作业;同时基于DeepLabv3+框架,通过改进部分网络结构以及添加各检测模块构,构建一种聚合多尺度信息的轻量级检测模型,并部署至上位机系统。最终检测结果表明:笔者模型在Crack-wall裂缝数据集上平均检测精度达到86.96%,相比原模型精度提升6.26%,交并比提高8.44%,召回率提高8.76%,且模型大小仅为10.613 M,具有较高检测精度以及实时检测效果,笔者所提检测方案具有可行性并成功将其应用于实际项目中。

关键词: 桥梁工程;裂缝分割;爬壁机器人;模块化设计;多尺度;实时轻量

Abstract: Aiming at the problems such as poor continuity of cracks on the surface of large-scale concrete bridge piers, large background interference, and large number of parameters of general deep learning crack detection model, a detection scheme combined with the improved lightweight DeepLabv3+ crack segmentation model and modular wall-climbing robot was proposed to achieve safe, fast and accurate detection of wall crack. The modular wall-climbing robot was used as the carrier to realize the crawling drive in complex environment through the self-group connection of each module, and the image acquisition equipment was equipped to collect the data of pier apparent disease. Meanwhile, based on DeepLabv3+ framework, a lightweight detection model of aggregation of multi-scale information was constructed by improving part of the network structure and adding various detection modules, and was deployed to the upper computer system. The final test results show that the average detection accuracy of the proposed model on the Crack-wall crack dataset reaches 86.96%, an improvement of 6.26% compared to the original model, an increase of 8.44% in intersection to union ratio, an increase of 8.76% in recall rate, and a model size of only 10.613M, with high detection accuracy and real-time detection effect. At the same time, the proposed detection scheme is feasible and successfully applied to the actual project.

Key words: bridge engineering; crack segmentation; wall-climbing robot; modular design; multi-scale; real-time lightweight

中图分类号: