[1] 赵一飞. 桥梁混凝土施工技术与裂缝预防措施[J]. 黑龙江交通科技, 2023,46(9): 120-122.
ZHAO Yifei. Bridge concrete construction technology and crack prevention measures [J]. Communications Science and Technology Heilongjiang, 2023, 46(9): 120-122.
[2] JIANG Shang, ZHANG Jian. Real-time crack assessment using deep neural networks with wall-climbing unmanned aerial system[J].Computer-Aided Civil and Infrastructure Engineering, 2020, 35(6): 549-564.
[3] KIM H, SIM S H, SPENCER B F. Automated concrete crack evaluation using stereo vision with two different focal lengths[J].Automation in Construction, 2022, 135: 104136.
[4] 黄海新, 王峥, 程寿山, 等. 负压吸附桥梁检测爬壁机器人的本体结构优化设计[J]. 华南理工大学学报(自然科学版), 2023,51(12): 21-33.
HUANG Haixin, WANG Zheng, CHENG Shoushan, et al. Optimized design of the main structure of a wall-climbing robot for bridge detection based on negative pressure adsorption[J]. Journal of South China University of Technology (Natural Science Edition), 2023, 51(12): 21-33.
[5] JANG K, AN Y K, KIM B, et al. Automated crack evaluation of a high-rise bridge pier using a ring-type climbing robot[J].Computer-Aided Civil and Infrastructure Engineering, 2021, 36(1): 14-29.
[6] DUNG C V, ANH L D. Autonomous concrete crack detection using deep fully convolutional neural network[J].Automation in Construction, 2019, 99: 52-58.
[7] 丁威, 夏哲, 舒江鹏, 等. 基于负压吸附爬壁机器人和Transformer的混凝土桥塔裂缝识别检测[J]. 中国公路学报, 2024, 37(2): 53-64.
DING Wei, XIA Zhe, SHU Jiangpeng, et al. Recognition and detection of concrete bridge tower cracks using a negative pressure adhesion wall-climbing robot and transformer[J]. China Journal of Highway and Transport, 2024, 37(2): 53-64.
[8] 余加勇, 刘宝麟, 尹东, 等. 基于YOLOv5和U-Net3+的桥梁裂缝智能识别与测量[J]. 湖南大学学报(自然科学版), 2023, 50(5): 65-73.
YU Jiayong, LIU Baolin, YIN Dong, et al. Intelligent identification and measurement of bridge cracks based on YOLOv5 and U-Net3+[J]. Journal of Hunan University (Natural Sciences), 2023, 50(5): 65-73.
[9] 黄海新, 贺朝, 程寿山, 等. 基于改进DeepLabV3+的钢桥锈蚀检测方法[J]. 重庆交通大学学报(自然科学版), 2025, 44(2): 18-24.
HUANG Haixin, HE Zhao, CHENG Shoushan, et al. Steel bridge rust detection method based on improved DeepLabV3+[J]. Journal of Chongqing Jiaotong University (Natural Science), 2025, 44(2): 18-24.
[10] HOU Qibin, ZHANG Li, CHENG Mingming, et al. Strip pooling: Rethinking spatial pooling for scene parsing[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, USA. IEEE, 2020: 4002-4011.
[11] 王龙业, 张凯信, 曾晓莉, 等. 基于多尺度特征融合和注意力机制的医学图像分割网络[J]. 光电子·激光, 2024, 35(1): 101-112.
WANG Longye, ZHANG Kaixin, ZENG Xiaoli, et al. Medical image segmentation network based on multi-scale feature fusion and attention mechanism[J]. Journal of Optoelectronics·Laser, 2024, 35(1): 101-112.
[12] 王安政, 党建武, 岳彪, 等. 基于位置信息和注意力机制的路面裂缝检测[J]. 计算机工程, 2024, 50(4): 303-312.
WANG Anzheng, DANG Jianwu, YUE Biao, et al. Road crack detection based on position information and attention mechanism[J]. Computer Engineering, 2024, 50(4): 303-312.
[13] LIU Yahui, YAO Jian, LU Xiaohu, et al. DeepCrack: A deep hierarchical feature learning architecture for crack segmentation[J].Neurocomputing, 2019, 338: 139-153.
[14] ZHU Q, PHUNG M D, HA Q. Crack detection using enhanced hierarchical convolutional neural networks[C]//Australasian Conference on Robotics and Automation: ACRA 2019, Adelaide, Australia, 2020:128-135.
[15] 陈里里, 蒋晓红, 张杰, 等. DSACNet: 改进YOLOX的雾天条件下道路缺陷检测[J]. 重庆交通大学学报(自然科学版), 2025, 44(2): 53-60.
CHEN Lili, JIANG Xiaohong, ZHANG Jie, et al. DSACNet: Improved YOLOX road defect detection under foggy conditions[J]. Journal of Chongqing Jiaotong University (Natural Science), 2025, 44(2): 53-60.
[16] 徐威, 于海滨, 余胤翔, 等. 基于UNet模型的赛道识别算法研究[J]. 智能计算机与应用, 2023, 13(8): 205-208, 213.
XU Wei, YU Haibin, YU Yinxiang, et al. Research on track recognition algorithm based on UNet model[J]. Intelligent Computer and Applications, 2023, 13(8): 205-208, 213.
[17] 齐峰. 基于Trans-UNet结构的多器官分割方法研究与应用[D]. 银川: 宁夏大学, 2024.
QI Feng. Research and Application of Multi-organ Segmentation Method Based on Trans-UNet Structure[D]. Yinchuan: Ningxia University, 2024.
[18] 贺琪, 曹翔, 徐慧芳, 等. M-PSPNet多尺度海洋温度锋检测方法[J]. 海洋环境科学, 2023, 42(4): 630-639.
HE Qi, CAO Xiang, XU Huifang, et al. M-PSPNet multi-scale ocean temperature front detection method[J]. Marine Environmental Science, 2023, 42(4): 630-639. |