[1] 孙志林, 卢雅倩, 黄赛花. 港口吞吐量的马氏链-时序分析预测[J]. 浙江大学学报(工学版), 2012, 46(7): 1289-1294.
SUN Zhilin, LU Yaqian, HUANG Saihua. Prediction of port throughput based on Markov chain-time series analysis[J]. Journal of Zhejiang University (Engineering Science), 2012, 46(7): 1289-1294.
[2] 封钰, 宋佑斌, 金晟, 等. 基于随机森林算法和粗糙集理论的改进型深度学习短期负荷预测模型 [J]. 发电技术, 2023, 44 (6): 889-895.
FENG Yu, SONG Yubin, JIN Sheng, et al. Improved deep learning short-term load forecasting model based on random forest algorithm and rough set theory [J].Power Generation Technology, 2023, 44 (6): 889-895.
[3] 杨宇鸽, 郝杨杨, 王逸文. 基于Neural Prophet-LSTM组合模型的港口货物吞吐量预测[J]. 中国航海, 2023, 46(4): 85-92.
YANG Yuge, HAO Yangyang, WANG Yiwen. Prediction of port cargo throughput using Neural Prophet-LSTM combination model[J]. Navigation of China, 2023, 46(4): 85-92.
[4] 丁天明, 潘宁, 杜柏松, 等. 基于改进灰色马尔可夫的港口货物吞吐量预测研究[J]. 重庆交通大学学报(自然科学版), 2023, 42(9): 130-136.
DING Tianming, PAN Ning, DU Baisong, et al. Forecast of cargo throughput in port based on improved grey Markov[J]. Journal of Chongqing Jiaotong University (Natural Science), 2023, 42(9): 130-136.
[5] 刘思峰, 郭天榜. 灰色系统理论及其应用[M]. 2版. 北京: 科学出版社, 1999.
LIU Sifeng, GUO Tianbang. Grey System Theory and Its Application[M]. 2nd ed. Beijing: Science Press, 1999.
[6] 杨金宝, 梁勇, 曹现宪. 一种基于灰色理论-隐马尔科夫模型的装备故障预测方法[J]. 舰船电子工程, 2018, 38(8): 128-132.
YANG Jinbao, LIANG Yong, CAO Xianxian. A method of equipment failure prediction based on grey theory-HMM[J]. Ship Electronic Engineering, 2018, 38(8): 128-132.
[7] 徐志胜. 安全系统工程[M]. 北京: 机械工业出版社, 2007.
XU Zhisheng.Safety System Engineering[M]. Beijing: China Machine Press, 2007.
[8] SHAMSHAD A, BAWADI M A, WANHUSSIN W M A, et al. First and second order Markov chain models for synthetic generation of wind speed time series[J].Energy, 2005, 30(5): 693-708.
[9] 杨承莲, 徐厚宝. 基于粒子群优化灰色马尔可夫模型及其应用[J]. 数学的实践与认识, 2023, 53(9): 267-276.
YANG Chenglian, XU Houbao. Grey Markov model optimized by particle swarm algorithm and application[J]. Mathematics in Practice and Theory, 2023, 53(9): 267-276.
[10] 马全党, 江福才, 范庆波, 等. PSO-无偏灰色马尔科夫模型在船舶交通流量预测中的应用[J]. 中国航海, 2019, 42(1): 97-103.
MA Quandang, JIANG Fucai, FAN Qingbo, et al. Application of PSO-unbiased grey Markov model in ship traffic flow prediction[J]. Navigation of China, 2019, 42(1): 97-103.
[11] 李兵, 蒋慰孙. 混沌优化方法及其应用[J]. 控制理论与应用, 1997, 14(4): 613-615.
LI Bing, JIANG Weisun. Chaos optimization method and its application[J]. Control Theory & Applications, 1997, 14(4): 613-615.
[12] 吴月秋, 纪昌明, 王丽萍, 等. 基于混沌粒子群算法的水电站水库优化调度[J]. 人民黄河, 2008, 30(11): 96-97.
WU Yueqiu, JI Changming, WANG Liping, et al. Optimal operation of hydropower stations and reservoirs based on chaotic particle swarm optimization algorithm[J].Yellow River, 2008, 30(11): 96-97.
[13] 高尚, 杨静宇. 混沌粒子群优化算法研究[J]. 模式识别与人工智能, 2006, 19(2): 266-270.
GAO Shang, YANG Jingyu. Research on chaos particle swarm optimization algorithm[J]. Pattern Recognition and Artificial Intelligence, 2006, 19(2): 266-270.
[14] 高鹰, 谢胜利. 混沌粒子群优化算法[J]. 计算机科学, 2004, 31(8): 13-15.
GAO Ying, XIE Shengli. Chaos particle swarm optimization algorithm[J]. Computer Science, 2004, 31(8): 13-15.
[15] CHEN Yakuan, GOLDSMITH J, OGDEN R T. Variable selection in function-on-scalar regression[J].Stat, 2016, 5(1): 88-101.
[16] LI Zhijun, WANG Weiwei, CHEN Mianyun. Improved grey-Markov chain algorithm for forecasting[J].Kybernetes, 2009, 38(3/4): 329-338.
[17] HU Hongtao, ZHAI Xiaojing, GUAN Xin. Crude oil output forecasting based on PSO of unbiased gray Markov model[C]//2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS). 2017, Beijing, China. IEEE, 2017: 644-647.
[18] 朱红求, 阳春华, 桂卫华, 等. 一种带混沌变异的粒子群优化算法[J]. 计算机科学, 2010, 37(3): 215-217.
ZHU Hongqiu, YANG Chunhua, GUI Weihua, et al. Particle swarm optimization with chaotic mutation[J].Computer Science, 2010, 37(3): 215-217.
[19] POLLOCK A C, MACAULAY A, DILEK A, et al. Evaluating predictive performance of judgmental extrapolations from simulated currency series[J].European Journal of Operational Research, 1999, 114(2): 281-293.
[20] AGRAWAL S, SILAKARI S, AGRAWAL J. Adaptive particle swarm optimizer with varying acceleration coefficients for finding the most stable conformer of small molecules[J].Molecular Informatics, 2015, 34(11/12): 725-735. |