中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

Journal of Chongqing Jiaotong University(Natural Science) ›› 2023, Vol. 43 ›› Issue (1): 39-45.DOI: 10.3969/j.issn.1674-0696.2024.01.06

• Transportation+Big Data & Artificial Intelligence • Previous Articles    

Summarization of Traffic Language

ZHANG Xu1, YANG Xiaoguang2, PANG Yuhao3, LI Yingshuai3   

  1. (1. School of Traffic and Transportation, Chongqing Jiaotong University, Chongqing 400074, China; 2. Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji University, Shanghai 200092, China; 3. School of Transportation Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China)
  • Received:2022-03-23 Revised:2022-06-25 Published:2024-01-19

交通语言综述化研究

张旭1,杨晓光2,庞聿皓3,李英帅3   

  1. (1. 重庆交通大学 交通运输学院,重庆 400074; 2. 同济大学 道路与交通工程教育部重点实验室 上海 200092; 3. 南京工业大学 交通运输工程学院,江苏 南京 211816)
  • 作者简介:张 旭(1988—),女,吉林长春人,博士研究生,主要从事交通信息工程及控制方面的研究。E-mail:415945332@qq.com 通信作者:杨晓光(1959—),男,上海人,教授,主要从事交通系统工程与智能交通运输系统及智慧城市方面的研究。E-mail:yangxg@tongji.edu.cn
  • 基金资助:
    国家自然科学基金项目(52072264)

Abstract: On the basis of organizing and analyzing previous literature on traffic language, the concepts of generalized traffic language and narrowed traffic language were put forward. Based on 1083 literatures published from 2012 to 2022, CiteSpace was used to conduct a visual analysis of the research on traffic language in China in the past ten years, including institutional cooperation network analysis, keyword co-occurrence network analysis, keyword clustering analysis and highlight word analysis. The research shows that in the past decade, the annual publication volume of traffic language literature in China has shown a slow growth trend. The research direction has gradually transitioned from the early concept of “intelligent transportation” to the intersection of computer science and other disciplines for in-depth research. The hotspots of traffic language research are concentrated in areas such as traffic sign detection and recognition and intelligent traffic signal systems. Finally, the future research trend is predicted through highlighting of key words.

Key words: transport engineering; traffic language; CiteSpace; knowledge atlas; visualization

摘要: 在整理分析前人对交通语言文献研究的基础上,提出广义交通语言与狭义交通语言的概念。以2012年到2022年发表的1 083篇文献为分析对象,通过CiteSpace以可视化的方式对我国近十年来的交通语言研究进行了机构合作网络分析、关键词共现网络分析、关键词聚类分析和突显词分析。研究表明,近十年来,我国的交通语言文献年发文量呈缓慢增长的趋势,研究方向从早期“智能交通”概念的提出逐渐过渡到与计算机等学科交叉从而进行深入研究,交通语言研究的热点集中于交通标志检测与识别和智能交通信号灯系统等领域。最后通过关键词的突显情况对未来研究走向做出预测。

关键词: 交通工程;交通语言;CiteSpace;知识图谱;可视化

CLC Number: