[1] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7:Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors [C]∥2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver, BC, Canada. IEEE, 2023: 7464-7475.
[2] SHAHIN S, SADEGHIAN R, SAREH S. Faster R-CNN-based decision making in a novel adaptive dual-mode robotic anchoring system [C] ∥2021 IEEE International Conference on Robotics and Automation (ICRA). Xi’an, China. IEEE, 2021: 11010-11016.
[3] CAI Zhaowei, VASCONCELOS N. Cascade R-CNN: Delving into high quality object detection [C] ∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA. IEEE, 2018: 6154-6162.
[4] GUO Lie, ZHAO Yibing, GAO Jiandong. Compression of vehicle and pedestrian detection network based on YOLOv3 model [J]. IEICE Transactions on Information and Systems, 2023(5): 735-745.
[5] 董恒祥, 潘江如, 董芙楠, 等. 基于改进YOLOv5s模型的车辆及行人检测方法[J]. 北华大学学报(自然科学版), 2024, 25(2): 244-254.
DONG Hengxiang, PAN Jiangru, DONG Funan, et al. Vehicle and pedestrian detection method based on improved YOLOv5s model [J]. Journal of Beihua University (Natural Science), 2024, 25(2): 244-254.
[6] ZHANG Yu, GUO Zhongyin, WU Jianqing, et al. Real-time vehicle detection based on improved YOLOv5 [J]. Sustainability, 2022, 14(19): 12274.
[7] ZHU Xingkui, LYU Shuchang, WANG Xu, et al. TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios [C]∥2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). Montreal, BC, Canada. IEEE, 2021: 2778-2788.
[8] 蔡刘畅, 杨培峰, 张秋仪. 基于YOLOv7的道路监控车辆检测方法[J]. 陕西科技大学学报, 2023, 41(6): 155-161.
CAI Liuchang, YANG Peifeng, ZHANG Qiuyi. Vehicle detection method based on YOLOv7 in traffic monitoring [J]. Journal of Shaanxi University of Science & Technology, 2023, 41(6): 155-161.
[9] 彭红星, 袁畅, 柯威曳, 等. 基于改进YOLOv5的高速公路隧道车辆和人员检测[J]. 科学技术与工程, 2024, 24(6): 2453-2461.
PENG Hongxing, YUAN Chang, KE Weiye, et al. Vehicle and personnel detection in highway tunnels based on improved YOLOv5 [J]. Science Technology and Engineering, 2024, 24(6): 2453-2461.
[10] 邓天民, 刘金凤, 王春霞, 等. 基于内容感知重组特征的车辆行人检测算法[J]. 重庆交通大学学报(自然科学版), 2023, 42(10): 132-141.
DENG Tianmin, LIU Jinfeng, WANG Chunxia, et al. Vehicle and pedestrian detection algorithm based on content-aware reassembly of features [J]. Journal of Chongqing Jiaotong University (Natural Science), 2023, 42(10): 132-141.
[11] 高瑞贞, 李树楠, 李晓辉. 机器人视觉中行人和车辆检测算法的研究[J]. 机械设计与制造, 2023(10): 277-280.
GAO Ruizhen, LI Shunan, LI Xiaohui. Research on pedestrian and vehicle detection algorithms in robot vision [J]. Machinery Design & Manufacture, 2023(10): 277-280.
[12] 王雪秋, 高焕兵, 郏泽萌. 改进YOLOv8的道路缺陷检测算法[J]. 计算机工程与应用, 2024, 60(17): 179-190.
WANG Xueqiu, GAO Huanbing, JIA Zemeng. Improved road defect detection algorithm based on YOLOv8 [J]. Computer Engineering and Applications, 2024, 60(17): 179-190.
[13] KANG M, TING C M, TING F F, et al. ASF-YOLO: A novel YOLO model with attentional scale sequence fusion for cell instance segmentation [J]. Image and Vision Computing, 2024, 147: 105057.
[14] 史涛, 刘祖林, 朱文旭, 等. 基于改进YOLOv5s的车辆行人检测[J]. 国外电子测量技术, 2023, 42(12): 195-200.
SHI Tao, LIU Zulin, ZHU Wenxu, et al. Vehicle and pedestrian detection based on improved YOLOv5s [J]. Foreign Electronic Measurement Technology, 2023, 42(12): 195-200.
[15] 李琳, 靳志鑫, 俞晓磊, 等. Haar小波下采样优化YOLOv9的道路车辆和行人检测[J]. 计算机工程与应用, 2024, 60(20): 207-214.
LI Lin, JIN Zhixin, YU Xiaolei, et al. Road vehicle and pedestrian detection based on Haar wavelet down sampling optimized YOLOv9 [J]. Computer Engineering and Applications, 2024, 60(20): 207-214. |