[1] 罗利, 罗子圣. 结构健康监测系统在地震作用下大跨度桥梁动力响应分析的应用[J]. 建筑结构, 2023, 53(增刊1): 2122-2126.
LUO Li, LUO Zisheng. Application of structural health monitoring system in dynamic response analysis of long-span bridge under earthquake action [J]. Building Structure, 2023, 53(Sup 1): 2122-2126.
[2] 郭俊锋, 胡婧怡, 王智明. 基于压缩感知的缺失机械振动信号重构新方法[J]. 振动与冲击, 2024, 43(10): 197-204.
GUO Junfeng, HU Jingyi, WANG Zhiming. Novel method for missing mechanical vibration signal reconstruction based on compressed sensing [J]. Journal of Vibration and Shock, 2024, 43(10): 197-204.
[3] ZHAI Ruoshui, GUTMAN R. A Bayesian singular value decomposition procedure for missing data imputation [J]. Journal of Computational and Graphical Statistics, 2023, 32(2): 470-482.
[4] ALMEIDA A, BRS S, SARGENTO S, et al. Focalize K-NN: An imputation algorithm for time series datasets [J]. Pattern Analysis and Applications, 2024, 27(2): 39.
[5] OH B K, GLISIC B, KIM Y, et al. Convolutional neural network-based data recovery method for structural health monitoring [J]. Structural Health Monitoring, 2020, 19(6): 1821-1838.
[6] 徐晔波, 倪颖杰. 基于VAEGAN的缺失数据填补研究[J]. 信息工程大学学报, 2022, 23(2): 224-229.
XU Yebo, NI Yingjie. Missing data imputation method based on VAEGAN [J]. Journal of Information Engineering University, 2022, 23(2): 224-229.
[7] 辛景舟, 杨伟彤, 周建庭, 等. 考虑时空相关性的桥梁监测数据多通道联合恢复方法[J]. 振动工程学报, 2025, 38(3): 558-566.
XIN Jingzhou, YANG Weitong, ZHOU Jianting, et al. Joint recovery method for multi-channel bridge monitoring data considering spatiotemporal correlation [J]. Journal of Vibration Engineering, 2025, 38(3): 558-566.
[8] LI Yangtao, BAO Tengfei, CHEN Hao, et al. A large-scale sensor missing data imputation framework for dams using deep learning and transfer learning strategy [J]. Measurement, 2021, 178: 109377.
[9] TANG Zhiyi, BAO Yuequan, LI Hui. Group sparsity-aware convolutional neural network for continuous missing data recovery of structural health monitoring [J]. Structural Health Monitoring, 2021, 20(4): 1738-1759.
[10] DENG Fan, TAO Xiaoming, WEI Pengxiang, et al. A robust deep learning-based damage identification approach for SHM considering missing data [J]. Applied Sciences, 2023, 13(9): 5421.
[11] MOSER P, MOAVENI B. Environmental effects on the identified natural frequencies of the Dowling Hall Footbridge [J]. Mechanical Systems and Signal Processing, 2011, 25(7): 2336-2357.
[12] ALONSO S, MORN A, PREZ D, et al. Gap imputation in related multivariate time series through recurrent neural network-based denoising autoencoder [J]. Integrated Computer-Aided Engineering, 2024, 31(2): 157-172. |