[1] 黄镇东. 成渝地区双城经济圈水运高质量发展若干问题思考[J]. 重庆交通大学学报(自然科学版), 2021, 40(10): 1-6.
HUANG Zhendong. Some thoughts on the high-quality development of water transport in Chengdu-Chongqing area twin city economic circle [J]. Journal of Chongqing Jiaotong University (Natural Science), 2021, 40(10): 1-6.
[2] 李文杰, 唐伯明, 杨胜发, 等. 长江上游黄金航道生态可持续发展评价[J]. 重庆交通大学学报(自然科学版), 2021, 40(10): 7-13.
LI Wenjie, TANG Boming, YANG Shengfa, et al. Ecological sustainable development assessment of golden waterway in the upper Yangtze River [J]. Journal of Chongqing Jiaotong University (Natural Science), 2021, 40(10): 7-13.
[3] 李文杰, 樊宇奇, 戴卓, 等. 岷江下游铜锣湾段航道三维水温分布特征研究[J]. 重庆交通大学学报(自然科学版), 2022, 41(11): 131-136.
LI Wenjie, FAN Yuqi, DAI Zhuo, et al. Characterization of three-dimensional water temperature distribution in the channel of Tongluowan section of the lower Minjiang river [J]. Journal of Chongqing Jiaotong University (Natural Science), 2022, 41(11): 131-136.
[4] 董玉财, 杜忠华, 刘荣忠, 等. 弹头部结构对侵彻层合靶的影响[J]. 高压物理学报, 2014, 28(3): 358-364.
DONG Yucai, DU Zhonghua, LIU Rongzhong, et al. Influence of the nose structure on penetration into laminated target [J]. Chinese Journal of High Pressure Physics, 2014, 28(3): 358-364.
[5] 宋梅利, 王晓鸣, 李文彬, 等. 弹头形状对高速侵彻效应的影响[J]. 弹道学报, 2014, 26(3): 66-71.
SONG Meili, WANG Xiaoming, LI Wenbin, et al. Influence of projectiles nose shape onhigh-speed penetration effect [J]. Journal of Ballistics, 2014, 26(3): 66-71.
[6] 邓佳杰, 张先锋, 葛贤坤, 等. 基于局部相互作用理论的侵彻弹头部形状优化及仿真[J]. 爆炸与冲击, 2017, 37(4): 611-620.
DENG Jiajie, ZHANG Xianfeng, GE Xiankun, et al. Nose-shape optimization and simulation of projectiles penetrating into concrete target based on local interaction theory [J]. Explosion and Shock Waves, 2017, 37(4): 611-620.
[7] 孙炜海, 鞠桂玲, 张超群, 等. 弹头形状对刚性动能弹丸垂直穿透钢板的影响[J]. 高压物理学报, 2017, 31(5): 548-556.
SUN Weihai, JU Guiling, ZHANG Chaoqun, et al. Influences of projectile nose shape on the normal perforation of steel plates by rigid projectiles [J]. Chinese Journal of High Pressure Physics, 2017, 31(5): 548-556.
[8] 孙银, 周克栋, 赫雷. 特种弹头结构设计与终点效应研究[J]. 兵器装备工程学报, 2019, 40(7): 56-59.
SUN Yin, ZHOU Kedong, HE Lei. Structural design and terminal effects analysis of special bullet [J]. Journal of Ordnance Equipment Engineering, 2019, 40(7): 56-59.
[9] 李鹏飞, 吕永柱, 周涛, 等. 弹头形状对侵彻多层靶弹道的影响[J]. 含能材料, 2021, 29(2): 124-131.
LI Pengfei, LYU Yongzhu, ZHOU Tao, et al.Influence of nose shape of projectile on the penetration trajectory of multilayer target [J]. Chinese Journal of Energetic Materials, 2021, 29(2): 124-131.
[10] 陈波潓. 铺层角度和弹头锥角对CFRP层合板抗侵彻性能的影响[J]. 江西科学, 2022, 40(4): 657-664.
CHEN Bohui. Effect of lay-up angle and warhead taper angle on the anti-penetration of CFRP laminates [J]. Jiangxi Science, 2022, 40(4): 657-664.
[11] 杨慧, 柯明, 李明, 等. 正侵彻半无限靶的刚性弹体头部形状优化分析[J]. 现代应用物理, 2022, 13(3): 190-197.
YANG Hui, KE Ming, LI Ming, et al. Optimization analysis of rigid projectile nose shape for normal penetrating into semi-infinite targets [J]. Modern Applied Physics, 2022, 13(3): 190-197.
[12] 谢桂兰, 陈飞, 龚曙光, 等. 基于物质点法不同头部形状弹体侵彻动靶过程的仿真研究[J]. 应用力学学报, 2019, 36(3): 573-579.
XIE Guilan, CHEN Fei, GONG Shuguang, et al. Numerical simulation on the projectile with different nose shapes penetrating moving target based on material point method [J]. Chinese Journal of Applied Mechanics, 2019, 36(3): 573-579.
[13] 薛建锋, 沈培辉, 王晓鸣. 不同头部形状弹体侵彻混凝土的试验研究[J]. 兵工自动化, 2016, 35(2): 75-78.
XUE Jianfeng, SHEN Peihui, WANG Xiaoming. An experimental study on projectiles penetrating into concrete targets with different nose shapes [J]. Ordnance Industry Automation, 2016, 35(2): 75-78.
[14] 徐策, 王峰会, 王绍明. 不同头部形状弹体侵彻土壤过程研究[J]. 科学技术与工程, 2011, 11(15): 3435-3438.
XU Ce, WANG Fenghui, WANG Shaoming. On the penetrations of soil and foam with different nose shapes [J]. Science Technology and Engineering, 2011, 11(15): 3435-3438.
[15] 程兴旺, 王富耻, 李树奎, 等. 不同头部形状长杆弹侵彻过程的数值模拟[J]. 兵工学报, 2007, 28(8): 930-933.
CHENG Xingwang, WANG Fuchi, LI Shukui, et al. Numerical simulation on the penetrations of long-rod projectiles with different nose shapes [J]. Acta Armamentarii, 2007, 28(8): 930-933.
[16] PRFSTFRO T. Verification of a Six-Degree of Freedom Simulation Model for the REMUS Autonomous Underwater Vehicle [D]. Boston: Massachusetts Institute of Technology, 2001. |