[1] 张卫红, 唐长红. 航空航天装备的轻量化: 挑战与未来[J]. 航空学报, 2024,45(5): 529965.
ZHANG Weihong, TANG Changhong. Lightweighting of aerospace and aeronautical equipment: challenges and perspectives[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529965.
[2] 梁祖磊, 孟岩松, 赵嘉喜, 等. 增材制造点阵结构设计、制备及性能研究进展[J]. 中国有色金属学报, 2025,35(1): 34-56.
LIANG Zulei, MENG Yansong, ZHAO Jiaxi, et al. Research progress on design, preparation and properties of additive manufacturing lattice structures[J]. The Chinese Journal of Nonferrous Metals, 2025, 35(1): 34-56.
[3] 吴文旺, 夏热. 轻质点阵超结构设计及多功能力学性能调控方法[J]. 力学进展, 2022,52(3): 673-718.
WU Wenwang, XIA Re. Design of lightweight lattice meta-structures and approaches to manipulate their multi-functional mechanical properties[J]. Advances in Mechanics, 2022, 52(3): 673-718.
[4] 杨鑫, 马文君, 王岩, 等. 增材制造金属点阵多孔材料研究进展[J]. 材料导报, 2021,35(7): 7114-7120.
YANG Xin, MA Wenjun, WANG Yan, et al. Research progress of metal lattice porous materials for additive manufacturing[J]. Materials Reports, 2021, 35(7): 7114-7120.
[5] 任毅, 冉威, 蒲林, 等. SLM成形Ti-6Al-4V层状混合点阵结构的力学性能和吸能特性研究[J]. 重庆交通大学学报(自然科学版), 2024,43(6): 118-126.
REN Yi, RAN Wei, PU Lin, et al. Mechanical properties and energy absorption characteristics of SLM-formed Ti-6Al-4V layered hybrid lattice structure[J]. Journal of Chongqing Jiaotong University (Natural Science), 2024, 43(6): 118-126.
[6] 徐聪, 张越, 马小敏, 等. 仿金刚石晶格构型点阵材料的变形机制及力学性能[J]. 复合材料学报, 2025,42(7): 4185-4197.
XU Cong, ZHANG Yue, MA Xiaomin, et al. Deformation mechanism and mechanical properties of diamond-like lattice materials[J]. Acta Materiae Compositae Sinica, 2025, 42(7): 4185-4197.
[7] 段晟昱, 王潘丁, 刘畅, 等. 增材制造三维点阵结构设计、优化与性能表征方法研究进展[J]. 航空制造技术, 2022,65(14): 36-48.
DUAN Shengyu, WANG Panding, LIU Chang, et al. Research progress on design, optimization and performance characterization of additive manufactured 3D lattice structures[J]. Aeronautical Manufacturing Technology, 2022, 65(14): 36-48.
[8] PARK K M, ROH Y S, LEE B C. Effects of the unit-cell size and arrangement on the compressive behaviors of lattice structures in powder bed fusion additive manufacturing[J].Results in Materials, 2024, 22: 100587.
[9] YANG Lei, HAN Changjun, WU Hongzhi, et al. Insights into unit cell size effect on mechanical responses and energy absorption capability of titanium graded porous structures manufactured by laser powder bed fusion[J].Journal of the Mechanical Behavior of Biomedical Materials, 2020, 109: 103843.
[10] 徐仰立, 张冬云, 胡松涛, 等. 结构尺寸对多孔Ti6Al4V力学性能的影响[J]. 稀有金属材料与工程, 2020, 49(5): 1736-1742.
XU Yangli, ZHANG Dongyun, HU Songtao, et al. Unit cell size effect on mechanical properties of Ti6Al4V porous structure[J]. Rare Metal Materials and Engineering, 2020, 49(5): 1736-1742.
[11] REN Yi, NIE Yu, RAN Wei, et al. Mechanical properties and energy absorption of soft-hard dual phase lattice structures manufactured via selective laser melting[J]. Metals and Materials International, 2024, 30(2): 303-314.
[12] BAI Long, XU Yue, CHEN Xiaohong, et al. Improved mechanical properties and energy absorption of Ti6Al4V laser powder bed fusion lattice structures using curving lattice struts[J]. Materials & Design, 2021, 211: 110140.
[13] ZHANG Bi, LI Yongtao, BAI Qian. Defect formation mechanisms in selective laser melting: A review[J].Chinese Journal of Mechanical Engineering, 2017, 30(3): 515-527.
[14] ECHETA I, FENG Xiaobing, DUTTON B, et al. Review of defects in lattice structures manufactured by powder bed fusion[J].The International Journal of Advanced Manufacturing Technology, 2020, 106(5): 2649-2668.
[15] ZHAO Miao, LIU Fei, FU Guang, et al. Improved mechanical properties and energy absorption of BCC lattice structures with triply periodic minimal surfaces fabricated by SLM[J].Materials, 2018, 11(12): 2411.
[16] SOKOLLU B, GULCAN O, KONUKSEVEN E I. Mechanical properties comparison of strut-based and triply periodic minimal surface lattice structures produced by electron beam melting[J].Additive Manufacturing, 2022, 60: 103199. |