中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

Journal of Chongqing Jiaotong University(Natural Science) ›› 2002, Vol. 21 ›› Issue (3): 26-29.

Previous Articles     Next Articles

Prediction of resilient modulus of asphalt pavement material by artificial neural networks

MAO Cheng , QIU Yan-jun   

  1. Southwest Jiaotong University , Shool of Civil Engineering , Sichuan Chengdu , 610031, China
  • Received:2001-10-15 Revised:2001-12-07 Online:2002-09-15 Published:2015-05-18

用人工神经网络预测沥青路面材料的回弹模量

毛成,邱延峻   

  1. 西南交通大学,土木工程学院,四川成都610031
  • 作者简介:毛成(1973 — ),男,四川荥经人,博士生,主要从事路基路面整体设计理论研究

Abstract: Artificial neural networks are used on resilient modulus of asphalt pavement material prediction in this paper . An effective method of prediction is put forward , and the neural networks model for resilient modulus prediction is found . The predicting results indicate that the model proposed can gain high precision , which provide a new way for predicting resilient modulus and other mechanical behavior index of asphalt pavement material

Key words: artificial neural networks , asphalt pavement material , resilient modulus

摘要: 将人工神经网络应用于沥青路面材料的回弹模量的预测,提出了一种有效的预测方法,并构造了预测回弹 模量的神经网络模型。预测结果表明,该模型具有较高的预测精度,为预测路面材料的回弹模量等力学指标提供 了一种新的方法。

关键词: 人工神经网络, 沥青路面材料, 回弹模量

CLC Number: