[1] SALMAN M, MATHAVAN S, KAMAL K, et al. Pavement crack detection using the Gabor filter[C]∥16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013). The Hague, Netherlands. IEEE, 2013: 2039-2044.
[2] 彭博, 黄大荣, 郭黎, 等. 基于像素-亚像素级形态分析的路面三维图像裂缝自动识别算法[J]. 重庆交通大学学报(自然科学版), 2018, 37(9): 34-42.
PENG Bo, HUANG Darong, GUO Li, et al. Automatic crack detection algori-thm from 3D pavement images based on shape analysis at pixel-subpixel level[J].Journal of Chongqing Jiaotong University (Natural Science), 2018, 37(9): 34-42.
[3] 张振海, 贾争满, 季坤. 基于改进的Otsu法的地铁隧道裂缝识别方法研究[J]. 重庆交通大学学报(自然科学版), 2022, 41(1): 84-90.
ZHANG Zhenhai, JIA Zhengman, JI Kun. Crack identification method of subway tunnel based on improved Otsu method[J].Journal of Chong-qing Jiaotong University (Natural Science), 2022, 41(1): 84-90.
[4] ZOU Qin, ZHANG Zheng, LI Qingquan, et al. DeepCrack: Learning hierarchical convolutional features for crack detection[J].IEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing Society, 2018, 28(3):1498-1512.
[5] LIU Yahui, YAO Jian, LU Xiaohu, et al. DeepCrack: A deep hierar-chical feature learning architecture for crack segmentation[J].Neurocomputing, 2019, 338(C): 139-153.
[6] LIU Huajun, YANG Jing, MIAO Xiangyu, et al. Crack Former network for pavement crack segmentation[J].IEEE Transactions on Intelligent Transportation Systems, 2023, 24(9): 9240-9252.
[7] LIU Gaoyang, DING Wei, SHU Jiangpeng, et al. Two-stream boundary-aware neural network for concrete crack segmentation and quantification[J]. Structural Control and Health Monitoring, 2023, 2023: 3301106.
[8] DUAN Yuwei, LIN Xun, TANG Wenzhong, et al. Dual flow fusion model for concrete surface crack segmentation[EB/OL]. 2023: ArXiv: 2305.05132. http:∥arxiv.org/abs/2305.05132
[9] ZHOU Xilin, WEI Yanhui, OUYANG Wenjia. A boundary-guided and lightweight object detector for sonar images[C]∥OCEANS 2023-Limerick. Limerick, Ireland. IEEE, 2023: 1-7.
[10] XIAO Jin, CHEN Tianyou, HU Xiaoguang, et al. Boundary-guided context-aware network for camouflaged object detection[J]. Neural Computing and Applications, 2023, 35(20): 15075-15093.
[11] LU Fangfang, TANG Chi, LIU Tianxiang, et al. Multi-attention segmentation networks combined with the Sobel operator for medical images[J]. Sensors, 2023, 23(5): 2546.
[12] MEHTA S, RASTEGARI M. MobileViT: Light-weight, general-purpose, and mobile-friendly vision transformer[EB/OL]. 2021: ArXiv: 2110.02178. http:∥arxiv.org/abs/2110.02178.
[13] ZHU Guijie, FAN Zhun, LIU Jiacheng, et al. RHA-net: An encoder-decoder network with residual blocks and hybrid attention mechanisms for pavement crack segmentation[EB/OL]. 2022: ArXiv: 2207.14166. http:∥arxiv.org/abs/2207.14166.
[14] SHI Yong, CUI Limeng, QI Zhiquan, et al. Automatic road crack detection using random structured forests[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(12): 3434-3445.
[15] LEE Y, PARK J. CenterMask: Real-time anchor-free instance segmentation[C]∥2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA. IEEE, 2020: 13903-13912. |