[1] ?AFAK ?, GüREL S, AKTüRK M S. Integrated aircraft-path assign-ment and robust schedule design with cruise speed control [J]. Computers & Operations Research, 2017, 84: 127-145.
[2] WU Chenglung, LAW K. Modelling the delay propagation effects of multiple resource connections in an airline network using a Bayesian network model [J]. Transportation Research Part E: Logistics and Transportation Review, 2019, 122: 62-77.
[3] 何坚, 果红艳, 姚远, 等. 基于有效中转时间预测的不正常航班恢复技术[J]. 北京航空航天大学学报, 2022, 48(3): 384-393.
HE Jian, GUO Hongyan, YAO Yuan, et al. Irregular flight recovery tech-nique based on accurate transit time prediction [J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 384-393.
[4] 丁建立, 王新茹, 徐涛. 航班延误恢复调度的混合粒子群算法[J]. 交通运输工程学报, 2008, 8(2): 90-95.
DING Jianli, WANG Xinru, XU Tao. Hybrid particle swarm optimi-zation arithmetic for recovery scheduling of flight delays [J]. Journal of Traffic and Transportation Engineering, 2008, 8(2): 90-95.
[5] XU Bo. An efficient Ant Colony algorithm based on wake-vortex mode-ling method for aircraft scheduling problem [J]. Journal of Computa-tional and Applied Mathematics, 2017, 317: 157-170.
[6] IKLI S, MANCEL C, MONGEAU M, et al. An optimistic planning app-roach for the aircraft landing problem [C]∥ Air Traffic Management and Systems IV: Selected Papers of the 6th ENRI International Workshop on ATM/CNS (EIWAC2019). Singapore: Springer, 2021: 173-188.
[7] MUNOS R. From bandits to Monte-Carlo tree search: The optimistic pri-nciple applied to optimization and planning [J]. Foundations and Trends in Machine Learning, 2014, 7(1): 1-129.
[8] SOARES I B, DE HAUWERE Y M, JANUARIUS K, et al. Departure management with a reinforcement learning approach: Respecting CFMU slots [C] ∥2015 IEEE 18th International Conference on Intelligent Transportation Systems. IEEE, 2015: 1169-1176.
[9] 李亚飞, 吴庆顺, 徐明亮, 等. 基于强化学习的舰载机保障作业实时调度方法[J]. 中国科学: 信息科学, 2021, 51(2): 247-262.
LI Yafei, WU Qingshun, XU Mingliang, et al. Real-time scheduling for carrier-borne aircraft support operations: A reinforcement learning approach [J]. Scientia Sinica (Informationis), 2021, 51(2): 247-262.
[10] 赵秀丽, 朱金福, 郭梅. 不正常航班延误调度模型及算法[J]. 系统工程理论与实践, 2008, 28(4): 129-134.
ZHAO Xiuli, ZHU Jinfu, GUO Mei. Study on modelling and algorithm of irregular flight delay operation [J]. Systems Engineering-Theory & Practice, 2008, 28(4): 129-134.
[11] GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks [C]∥The 14th International Conference on Artificial Intelli-gence and Statistics (AISTATS), Fort Lauderdale, Florida, USA,2011: 315-323.
[12] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Playing Atari with deep reinforcement learning [C] ∥Proceedings of the NIPS Workshop on Deep Learning. Lake Tahoe: MIT Press, 2013.
[13] 梁星星,冯旸赫,马扬,等. 多Agent深度强化学习综述[J].自动化学报, 2020, 46(12): 2537-2557
LIANG Xingxing, FENG Yanghe, MA Yang, et al. Deep multi-agent reinforcement learning: A survey [J]. Acta Automatica Sinica, 2020, 46(12): 2537-2557.
[14] KINGA D, ADAM J B. A method for stochastic optimization [C]∥ The 3rd International Conference on Learning Representations (ICLR), San Diego, CA, USA, 2015.
[15] MNIH V, BADIA A P, MIRZA M, et al. Asynchronous methods for deep reinforcement learning [C]∥ The 33rd International Conference on Machine Learning. New York, USA, 2016: 1928-1937.
[16] MARINI F, WALCZAK B. Particle swarm optimization (PSO): A tutorial [J]. Chemometrics and Intelligent Laboratory Systems, 2015, 149: 153-165.
[17] NIU Huimin, ZHOU Xuesong. Optimizing urban rail timetable under time-dependent demand and oversaturated conditions [J]. Transpor-tation Research Part C: Emerging Technologies, 2013, 36: 212-230. |