中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

Journal of Chongqing Jiaotong University(Natural Science) ›› 1986, Vol. 5 ›› Issue (2): 42-50.

Previous Articles     Next Articles

THE UNIQUENESS OF THE LIMIT CLYCLES OF PREDATOR-PREY SYSTEM(A1) WITH THE PREDATOR'S FUNCTIONALRESPONSE OBEYING THE THIRD KINDOF HOLLING CURVE

Xiong Wiemin   

  • Received:1985-12-02 Online:1986-04-25 Published:2016-10-25

具有Houing第三类功能性反应的捕食者——食饵系统极限环的唯一性

熊为民   

Abstract: In this paper,we consider the Predator-Prey system(A1) that the predator's functional response obeys the third kind of Holling Curve s=r(1-s/K)s-(as2x/(1+bs2)≡as2/(1+bs2)[f(s)-x], x=x(ms2/(1+bs2)-D0)≡(m-D0b)x/(1+bs2)(s2-β2)·(A1), f(s)=(r/as)((1-s)/K)(1+bs2), β=√D0/m-D0b, s(0)=s0>0,x(0)=x0>0,K,r,a,b,m,D0 are all positive const. We have proved that If f'(β)>0, then there is the unique limit cycles of the Predator-Prey system (A1) in s>0,x>0.

摘要: 本文用与[5]证明Liénard方程极限环唯一性类似的方法,证明了食饵具有x线性密度制约,捕食者只有Holling第三类功能性反应的捕食者——食饵系统<A1>, s=(as2)/(1+bs2)[f(s)-x], x=(m-D0b)(x)/1+bs2)[s2-β2]·<A1>其中:f(s)=(r/as)(1-s/K)(1+bs2), β=√D0/m-D0b, s(0)=s0>0,x(0)=x0>0,K.r.a.b.m.D0均为正常数若f'(β)>0,则在s>0,x>0内存在唯一的极限环。