[1] LV Y, DUAN Y, KANG W. Traffic flow prediction with big data: a deep learning approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(2): 865-873.
[2] MA X, TAO Z, WANG Y. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data[ J]. Transportation Research Part C Emerging Technologies, 2015, 54: 187-197.
[3] HOU Y, EDARA P, SUN C. Traffic flow forecasting for urban work zones[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(4): 1761-1770.
[4] ROMERO D, RICO N, GARCIA-ARENAS M I. Modellation and forecast of traffic series by a stochastic process[M]// Time Series Analysis and Forecasting. Berlin:Springer International Publishing, 2016.
[5] FAN N, ZHAO X M, DAI M, et al. Short-term traffic flow prediction model[J]. Journal of Traffic & Transportation Engineering, 2012,12:114-119.
[6] KUMARS V, VANAJAKSHI L. Short-term traffic flow prediction using seasonal ARIMA model with limited input data[J]. European Transport Research Review, 2015, 7(3):21.
[7] OKUTANI I, STEPHANEDES Y J. Dynamic prediction of traffic volume through Kalman filtering theory[J]. Transportation Research Part B: Methodological, 1984, 18(1): 1-11.
[8] STEPHANEDES Y J, MICHALOPOULOS P G, PLUM R A. Improved estimation of traffic flow for real time control[J]. Journal of the Transportation Research Board, 1981,795:28-39.
[9] DAVISG A, NIHAN N L. Nonparametric regression and short-term freeway traffic forecasting[J]. Journal of Transportation Engineering, 1991, 117(2): 178-188.
[10] 许岩岩, 翟希, 孔庆杰. 高速路交通流量短时预测方法[J]. 交通运输工程学报, 2013, 13(2): 114-119.
XU Yanyan, ZHAI xi, KONG Qingjie. Short-term prediction method of freeway traffic flow[J]. Journal of Traffic and Transportation Engineering, 2013, 13(2):114-119.
[11] CHAI Y, HUANG D, ZHAO L. A short-term traffic flow prediction method based on wavelet analysis and neural network[C]// Control and Decision Conference.Piscataway, N J: IEEE, 2016:7030-1034.
[12] BAI C, PENG Z R, LU Q C, et al. Dynamic bus travel time prediction models on road with multiple bus routes[J]. Computational Intelligence & Neuroscience, 2015(3):1-9.
[13] 康军, 段宗涛, 唐蕾. 高斯过程回归短时交通流量预测方法[J]. 交通运输系统工程与信息, 2015, 15(4):51-56.
KANG Jun, DUAN Zongtao, TANG Lei. A short term traffic flow prediction method based on gaussian processes regression[J]. Journal of Transportation Systems Engineering and Information Technology, 2015, 15(4): 51-56
[14] BENGIO Y. Learning deep architectures for AI[J]. Foundations and Trends in Machine Learning, 2009, 2(1): 1-127.
[15] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504.
[16] COLLOBERT R, WESTON J. A unified architecture for natural language processing:deep neural networks with multitask learning [C]// International Conference on Machine Learning. New York: ACM, 2008:160-167.
[17] SCHMIDHUBER J. Deep learning in neural networks: An overview[J]. Neural Networks, 2015, 61: 85-117.
[18] ZHOU X, XIE L, ZHANG P, et al. An ensemble of deep neural networks for object tracking[C]//IEEE International Conference on Image Processing. Piscataway, NJ: IEEE, 2015:843-847.
[19] SHIN H C, ORTON M R, COLLINS D J, et al. Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2013, 35 (8):1930-1943.
[20] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J].
Neural Computation, 1997, 9(8): 1735-1780.
[21] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classifica-
tion with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems. New York : Curran Associates Inc., 2012: 1097-1105.
[22] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324.
[23] CHO K, VAN MERRIЁNBOER B, GULCEHRE C, et al. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation[C]// Empirical Methods in Natural Language Processing. Stroudsburg,PA : ACL, 2014:1724-1734.
[24] GOODFELLOW I, BENGIO Y, COURVILLE A, et al. Deep Learning[M]. Cambridge: MIT Press, 2016. |