中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

Journal of Chongqing Jiaotong University(Natural Science) ›› 2018, Vol. 37 ›› Issue (11): 76-82.DOI: 10.3969/j.issn.1674-0696.2018.11.13

• Traffic & Transportation Engineering • Previous Articles     Next Articles

Research on Traffic Flow Prediction Method Based on Gated Recurrent Unit Recurrent Neural Network

WANG Tiying1,SHI Pengchao1,LIU Jiangqiong2,LIU Boyi3,SHI Tianhao4   

  1. (1. Mechanical and Electrical College,Hainan University,Haikou 570228,Hainan,P. R. China; 2. Institute of Tropical Agriculture and Forestry,Hainan University,Haikou 570228,Hainan,P. R. China; 3. College of Information Science & Technology,Hainan University,Haikou 570228,Hainan,P. R. China; 4. College of Transportation,Shandong University of Science and Technology,Qingdao 266590,Shandong,P. R. China)
  • Received:2017-02-15 Revised:2017-12-10 Online:2018-11-19 Published:2018-11-19

基于门限递归单元循环神经网络的交通流预测方法研究

王体迎1,时鹏超1,刘蒋琼2,刘博艺3,时天昊4   

  1. (1. 海南大学 机电工程学院,海南 海口 570228; 2. 海南大学 热带农林学院,海南 海口 570228; 3. 海南大学 信息科学技术学院,海南 海口 570228; 4. 山东科技大学 交通学院,山东 青岛 266590)
  • 作者简介:王体迎(1966—),女,贵州贵阳人,副教授,主要从事交通运输规划与管理方面的研究。E-mail:wty@hainu.edu.cn。 通信作者:时鹏超(1995—),男,山东菏泽人,主要从事智能交通方面的研究。E-mail:1377197849@qq.com。
  • 基金资助:
    海南省自然科学基金项目(20155212)

Abstract: In order to effectively implement the intelligent traffic management system, it is necessary to improve the accuracy of traffic flow prediction. A short-term traffic flow prediction method was proposed based on the gated recurrent unit recurrent neural network. The new method can effectively model the “sequence information” without relying on the prior knowledge. By adopting this method, the real traffic flow data of British Columbia in Canada was modeled and analyzed, and the predicted effects by inputting data under different lag time were compared. In the meantime, the predicted results were compared with the ones of ARIMA and SVR. The study also demonstrated the predicted effect of new method in weekdays and weekends. The comparison results show that the new method performs well, and the mean absolute percentage errors reduced 74.72% and 12.15% respectively comparing with ARIMA and SVR. This new method achieves a high conformity between the predicted and actual traffic flow, which is effective and accurate for the future traffic flow prediction.

Key words: traffic and transportation engineering, intelligent transportation system, traffic flow prediction, gated recurrent unit, recurrent neural network

摘要: 为了有效地实施智能交通管理系统,需要进一步提高交通流量预测的准确率。提出了一种基于门限递归单元循环神经网络的短时交通流量预测方法,该方法可以不依靠先验知识,有效地利用“序列信息”建模。通过使用该方法对加拿大大不列颠哥伦比亚省的真实交通流量数据进行建模分析,并对比了在不同滞后时间的输入数据下该方法的预测效果,然后将其与ARIMA和SVR的预测结果进行了对比,同时也展示了该方法在工作日和周末的实际预测效果。结果表明:该方法预测效果良好,其平均绝对百分误差比ARIMA与SVR分别平均降低了74.72%和12.15%,预测值和实际交通流量吻合度高,是一种预测精度高且有效的交通流量预测方法。

关键词: 交通运输工程, 智能交通系统, 交通流量预测, 门限递归单元, 递归神经网络

CLC Number: