中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

Journal of Chongqing Jiaotong University(Natural Science) ›› 2020, Vol. 39 ›› Issue (12): 13-19.DOI: 10.3969/j.issn.1674-0696.2020.12.03

• Transport+Big Data and Artificial Intelligence • Previous Articles     Next Articles

Traffic Information Acceptance Behavior in Social Network Environment

CHEN Jian1, YU Hao1,2, ZHANG Chi1   

  1. (1. College of Traffic & Transportation, Chongqing Jiaotong University, Chongqing 400074, China; 2. China Design Group Co., Ltd., Nanjing 210014, Jiangsu, China)
  • Received:2019-06-28 Revised:2019-10-08 Online:2020-12-18 Published:2020-12-18
  • Supported by:
     

社交网络环境下交通信息接受行为研究

陈坚1,余豪1,2,张弛1   

  1. (1. 重庆交通大学 交通运输学院,重庆 400074;2. 华设设计集团股份有限公司,江苏 南京 210014)
  • 作者简介:陈坚(1985—),男,江西赣州人,教授,主要从事交通运输系统分析与决策方面的研究。E-mail:chenjian525@126.com 通信作者:余豪(1994—),男,四川南充人,硕士,助理工程师,主要从事交通规划方面的工作。E-mail:252029796@qq.com
  • 基金资助:
    国家社会科学基金西部项目(17XGL009);重庆市研究生科研创新项目(CYS19225)

Abstract: In order to solve the problem of lack of quantitative descriptive methods for influencing factors of traffic information reception behavior in social networks, based on technology reception model and micro-blog user information reception model, the structural equation model was used to quantitatively describe the coupling relationship among latent variables such as information cognition, subjective norms, perceived usefulness, perceived ease of use and willingness to receive information as well as the effect of latent variables on information acceptance behavior. Combined with gender, age and other individual attribute variables, a hybrid discrete model of traffic information reception behavior in social networks was constructed, which considered the interaction of latent variables and explicit variables. Empirical analysis was carried out through questionnaire data. The research results show that: in structural equation model, five latent variables all have a positive impact on information reception behavior, among which reception intention (0.742), information cognition (0.704) and subjective norm (0.641) have a greater impact on information reception behavior; the optimal ratio of the hybrid discrete model is 0.346, and it is 0.145 higher than that of BL model which only considers individual attribute variables.

 

Key words: traffic engineering, acceptance behavior, social network, traffic information, hybrid model

摘要: 为解决社交网络中交通信息接收行为影响因素缺少定量描述方法的问题,笔者基于技术接收模型和微博用户信息接收模型,运用结构方程模型对信息认知、主观规范、感知有用性、感知易用性和接收意愿等潜变量间相互耦合关系,及潜变量对信息接受行为结果进行定量作用描述;结合性别、年龄等个人属性变量,构建考虑潜变量与显变量共同作用的社交网络交通信息接收行为混合离散模型,通过问卷调查数据进行实证分析。研究结果表明:结构方程模型中,5个潜变量均对信息接收行为产生正向影响,其中接收意愿(0.742)、信息认知(0.704)与主观规范(0.641)对信息接收行为的影响效应较大;混合离散模型优度比为0.346,较传统只考虑个体属性变量的BL模型提升0.145。

关键词: 交通工程, 接受行为, 社交网络, 交通信息, 混合模型

CLC Number: