中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

Journal of Chongqing Jiaotong University(Natural Science) ›› 2018, Vol. 37 ›› Issue (1): 104-108.DOI: 10.3969/j.issn.1674-0696.2018.01.17

• Traffic & Transportation Engineering • Previous Articles     Next Articles

Passenger Flow Distribution Model for Urban Rail Transit Based on BP Neural Networks

WENG Xiaoxiong, WANG Zhoupan   

  1. (School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, Guangdong, P. R. China)
  • Received:2016-06-27 Revised:2016-11-15 Online:2018-01-15 Published:2018-01-15

基于BP神经网络的轨道交通客流分布模型

翁小雄, 汪周盼   

  1. (华南理工大学土木与交通学院,广东广州 510641)
  • 作者简介:翁小雄(1958—),女,浙江杭州人,教授,博士,主要从事智能交通方面的研究。E-mail:ctxxweng@scut.edu.cn。 通信作者:汪周盼(1991—),男,湖北武汉人,硕士研究生,主要从事智能交通方面的研究。E-mail:ctwangzhoupan@mail.scut.edu.cn。
  • 基金资助:
    国家自然科学基金项目(51108191);广东省交通运输厅科技项目(科技-2015-02-070);广东省科技计划项目(2014B090904059; 2016A030305001)

Abstract: The essence of fare clearing is the distribution problem of passenger flow in different lines. Thus, a kind of passenger clearing model for rail transit based on BP neural network was proposed, with the full consideration of passenger travel route choice on the basis of multi-factor.The multiple factors that influenced route choice of passengers were route choice were divided into quantified and uncertain factors. By training the inhibitory coefficient and the excitation coefficient of the sample, the results were transmitted to the output layer to output by combining with the transformation function.Compared with the traditional model, the proposed model was more consistent with the multi-factor psychology of passenger travel choice. Finally, by comparing the actual investigation of passenger flow and Logit model, it showed that without the interference of other factors, the proposed method can realize the passenger clearing in different lines well.

Key words: traffic engineering, urban traffic, passenger clearing, neural networks, railway transportation

摘要: 轨道交通费率清分的实质是在不同线路下网络客流分布的问题。在充分考虑乘客出行路径选择多要素的基础上,提出一种基于神经网络的轨道交通 客流清分模型。将影响乘客出行路径选择的多要素分为确定性要素和不确定性要素,通过样本训练神经元的抑制系数和激励系数,结合转换函数将结果传 导给输出层输出。与传统模型相比,该模型更符合乘客出行选择的多要素心理。最后通过对比客流调查结果和Logit模型表明,在排除其他要素的干扰下 ,该方法能够较好的实现客流在不同线路的清分。

关键词: 交通工程, 城市交通, 客流清分, 神经网络, 轨道交通

CLC Number: