中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

Journal of Chongqing Jiaotong University(Natural Science) ›› 2019, Vol. 38 ›› Issue (04): 15-22.DOI: 10.3969/j.issn.1674-0696.2019.04.03

• Transport+Big Data and Artificial Intelligence • Previous Articles     Next Articles

Vehicle Automatic Detection Algorithm from UAV Videos Based on Shape Analysis

PENG Bo1,2,3, CAI Xiaoyu1,2, ZHOU Tao4, LI Shaobo2, ZHANG Youjie2, DUAN Lianfei5   

  1. (1.Chongqing Key Lab of Traffic System & Safety in Mountain Cities, Chongqing 400074, P. R. China; 2.College of Traffic and Transportation, Chongqing Jiaotong University, Chongqing 400074, P. R. China; 3. Key Laboratory of Urban ITS Technology Optimization and Integration Ministry of Public Security, Hefei 230088, Anhui, P. R. China; 4. Chongqing Transport Planning and Research Institute, Chongqing 401147, P. R. China; 5. Anhui Keli Information Industry Co.,Ltd, Hefei 230088, Anhui, P. R. China)
  • Received:2017-11-06 Revised:2018-03-05 Online:2019-04-15 Published:2019-04-15

基于形态分析的无人机视频车辆自动识别算法

彭博1,2,3,蔡晓禹1,2,周涛4,李少博2,张有节2,段连飞5   

  1. (1. 山地城市交通系统与安全重庆市重点实验室,重庆 400074; 2. 重庆交通大学 交通运输学院,重庆 400074; 3. 城市交通管理集成与优化技术公安部重点实验室,安徽 合肥 230088; 4. 重庆市交通规划研究院,重庆 401147; 5. 安徽科力信息产业有限责任公司,安徽 合肥 230088)
  • 作者简介:彭博(1986—),男,四川南充人,副教授,博士,主要从事智能交通规划方面的研究。E-mail:pengbo351@126.com。 通信作者:蔡晓禹(1979—),男,四川达州人,教授,高级工程师,博士,主要从事交通规划和智能交通方面的研究。E-mail: caixiaoyu@vip.163.com。
  • 基金资助:
    国家自然科学基金青年科学基金项目(61703064);重庆市社会事业与民生保障科技创新专项项目(cstc2015shms-ztzx30002) ;重庆市教委科学研究项目(KJ1600513);重庆市基础前沿与技术创新项目(cstc2017jcyjAX0473, cstc2018jscx-msybX0295);城市交通 管理集成优化重点实验室与山地城市交通系统安全实验室开放基金(2017KFKT01, 2018TSSMC05)

Abstract: In order to collect continuous traffic flow information correctly and comprehensively from a regional perspective, a vehicle automatic detection method was proposed based on shape analysis aiming at UAV (unmanned aerial vehicle) videos. Firstly, a ROI (region of interest) was marked manually on the video frame, and grayscale processing was conducted on the frame. Secondly, a sub-pixel skeleton image was generated based on Canny edge detection result of ROI, and the image skeleton was decomposed and reconstructed. Then, vehicle targets were recognized through comprehensive application of morphological operations (dilation, erosion, filling and closing) and connected components shape features (area, rectangularity, major axis and minor axis of equivalent ellipse). Finally, algorithm detection and manual inspection were respectively conducted on 548 UAV video frames, and correct detection rate, repeated detection rate, missed detection rate and false detection rate for vehicle detection were calculated. Test results show that the proposed algorithm achieves higher correct detection rate (averaging 95.02%), lower repeated detection rate (averaging 2.20%), missed detection rate (averaging 2.77%) and false detection rate (averaging 8.24%). Besides, standard deviations of the correct detection rate, repeated detection rate, missed detection rate and false detection rate are 2.09%, 1.67%, 1.67% and 2.56%, respectively, which indicates that the proposed algorithm obtains smaller discrete degree of performance indexes and higher stability.

Key words: traffic engineering, vehicle detection, skeleton reconstruction, shape analysis, unmanned aerial vehicle, region of interest

摘要: 为从广域的视角准确全面地采集连续交通流信息,针对悬停无人机视频提出了基于形态分析的车辆自动识别方法。首先,人工勾画视 频帧图像的感兴趣区域,并进行灰度化处理;其次,基于感兴趣区域的Canny边缘检测结果生成亚像素级骨架图像,并对图像骨架进行分解 和重构处理;然后,综合应用形态学运算(膨胀、腐蚀、填充、闭运算)和连通域形态特征(面积、矩形度、等效椭圆长轴与短轴)识别车辆目 标;最后,对548帧无人机视频图像分别进行算法检测和人工识别,并计算车辆识别的正检率、重检率、漏检率和错检率。结果表明:该算 法具有较高的正检率(均值95.02%),较低的重检率(均值2.20%)、漏检率(均值2.77%)和错检率(均值8.24%);同时,正检率、重检率、漏检 率和错检率标准差分别为2.09%、1.67%、1.67%和2.56%,表明算法性能指标值离散程度较小、稳定性较高。

关键词: 交通工程, 车辆检测, 骨架重构, 形态分析, 无人机, 感兴趣区域

CLC Number: