[1] WATTLEWORTH J A.Peak-period analysis and control of a freeway system [J].Operations Research, 1965, 13: B145-155.
[2] GOMES G, HOROWITZ R.Optimal freeway ramp metering using the asymmetric cell transmission model [J].Transportation Research Part C: Emerging Technologies, 2006, 14(4): 244-262.
[3] MASHER D P, ROSS D W, WONG P J, et al.Guidelines for Design and Operation of Ramp Control Systems [R].Menlo Park, CA, USA: Stanford Research Institute, 1975.
[4] PAPAGEORGIOU M, HAJ-SALEM H, BLOSSEVILLE J M.ALINEA: A local feedback control law for on-ramp metering [J].Transportation Research Record Journal of the Transportation Research Board, 1991, 1320(1): 58-64.
[5] WANG Yibing, KOSMATOPOULOS E B, PAPAGEORGIOU M, et al.Local ramp metering in the presence of a distant downstream bottleneck: theoretical analysis and simulation study [J].IEEE Transactions on Intelligent Transportation Systems, 2014, 15(5): 2024-2039.
[6] 贺敬凯,徐建闽.基于BP神经网络的入口匝道控制器的设计[J].华南理工大学学报(自然科学版),2002,30(7):24-27.
HE Jingkai, XU Jianmin.Design of on-ramp controller based on BP neural networks [J].Journal of South China University of Technology (Natural Science Edition), 2002, 30(7): 24-27.
[7] 赵明,侯忠生,晏静文.受限迭代学习入口匝道控制收敛性分析[J].交通运输系统工程与信息,2011,11(2):166-173.
ZHAO Ming, HOU Zhongsheng, YAN Jingwen.Convergence analysis of ILC based ramp metering under constraints [J]. Journal of Transportation Systems Engineering and Information Technology, 2011, 11(2): 166-173.
[8] CHEN Jiming, LIN Weixin, YANG Zidong, et al.Adaptive ramp metering control for urban freeway using large-scale data [J].IEEE Transactions on Vehicular Technology, 2019, 68(10): 9507-9518.
[9] CI Yusheng, WU Hailong, SUN Yichen, et al.A prediction model with wavelet neural network optimized by the chicken swarm optimization for on-ramps metering of the urban expressway [J].Journal of Intelligent Transportation Systems, 2022, 26(3): 356-365.
[10] JACOB C, ABDULHAI B.Automated adaptive traffic corridor control using reinforcement learning: Approach and case studies [J].Transportation Research Record, 2006(1959): 1-8.
[11] 王兴举,高桂凤,宫城俊彦.高速公路单点入口匝道RLRM控制方法[J].交通运输工程学报,2012,12(3):101-107.
WANG Xingju, GAO Guifeng, MIYAGI T.RLRM control method of single entrance ramp for highway [J].Journal of Traffic and Transportation Engineering, 2012, 12(3): 101-107.
[12] DAVARYNEJAD M, HEGYI A, VRANCKEN J, et al.Motorway ramp-metering control with queuing consideration using Q-learning [C]//14th International IEEE Conference on Intelligent Transportation Systems.New York: IEEE, 2011: 1652-1658.
[13] RAZAEE K, ABDULHAI B, ABDELAGAWAD H.Application of reinforcement learning with continuous state space to ramp metering in real-world conditions [C] //15th International IEEE Conference on Intelligent Transportation Systems.New York: IEEE, 2012: 1590-1595.
[14] LU Chao, HUANG Jie.A self-learning system for local ramp metering with queue management [J].Transportation Planning and Technology, 2017, 40(2): 182-198.
[15] 冉润东.基于深度强化学习的高速公路入口匝道控制方法研究[D].青岛:山东科技大学,2019.
RAN Rundong.Research on Freeway Ramp Metering Method Based on Deep Reinforcement Learning [D].Qingdao: Shandong University of Science and Technology, 2019.
[16] 戴昇宏,李志斌.基于图像卷积神经网络的匝道控制深度强化学习算法研究[J].交通工程,2019,19(4):1-6.
DAI Shenghong, LI Zhibin.Research on ramp metering based on deep reinforcement learning with image convolutional neural network [J].Journal of Transportation Engineering, 2019, 19(4):1-6.
[17] ZHOU Yue, OZBAY K, KACHROO P, et al.Ramp metering for a distant downstream bottleneck using reinforcement learning with value function approximation [J].Journal of Advanced Transportation, 2020, 2020: 8813467.
[18] 韩靖.基于强化学习的城市快速路交织区入口匝道智能控制方法[D].南京:东南大学,2017.
HAN Jing.The Intelligent On-Ramp Metering at Urban Expressway Weave Area Based on Reinforcement Learning[D].Nanjing: Southeast University, 2017.
[19] 杨思明,单征,丁煜,等.深度强化学习研究综述[J].计算机工程,2021, 47(12): 19-29.
YANG Siming, SHAN Zheng, DING Yu, et al.Survey of research on deep reinforcement learning [J].Computer Engineering, 2021, 47(12): 19-29.
[20] 刘全,翟建伟,章宗长,等.深度强化学习综述[J].计算机学报,2018,41(1):1-27.
LIU Quan, ZHAI Jianwei, ZHANG Zongchang, et al.A survey on deep reinforcement learning [J].Chinese Journal of Computers, 2018, 41(1): 1-27.
[21] FARAZI N P, ZOU Bo, AHAMED T, et al.Deep reinforcement learning in transportation research: A review [J].Transportation Research Interdisciplinary Perspectives, 2021, 11: 100425.
[22] MNIH V, KAVUKCUOGLU K, SILVER D, et al.Human-level control through deep reinforcement learning [J].Nature, 2015, 518(7540): 529-533.
[23] LUONG N C, HOANG D T, GONG S, et al.Applications of deep reinforcement learning in communications and networking: A survey [J].IEEE Communications Surveys & Tutorials, 2019, 21(4): 3133-3174.
[24] THRUN S, SCHWARTZ A.Issues in using function approximation for reinforcement learning [C]//MOZER M, SMOLENSKY P, TOURETZKY D, at el.Proceedings of the Fourth Connectionist Models Summer School.New York: Lawrence Erlbaum Publishers, 1993: 255-263.
[25] van HASSELT H, GUEZ A, SILVER D.Deep reinforcement learning with double Q-learning [C]//AAAI.Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence.Menlo Park: AAAI, 2016: 2094-2100.
[26] WANGZiyu, SCHAUL T, HESSEL M, et al.Dueling network architectures for deep reinforcement learning [C]//BALCAN M F, WEINBERGER K Q.Proceedings of 33rd International Conference on Machine Learning.New York, USA: Curran Associates, Inc., 2016: 1995-2003.
[27] PAPAGEORGIOU M, PAPAMOCHAIL I.Overview of traffic signal operation policies for ramp metering [J].Transportation Research Record, 2008, 2089(2047): 28-36.
[28] SCHMIDT-DUMONT T, van VUUREN J H.Decentralized reinforcement learning for ramp metering and variable speed limits on highways [J].IEEE Transactions on Intelligent Transportation Systems, 2015, 14(8): 1-10.
[29] PAPAGEORGIO M, KOTSIALOS A.Freeway ramp metering:An overview [J].IEEE Transactions on Intelligent Transportation Systems, 2002, 3(4): 271-281. |