[1] 刘小明. 城市交通与管理——中国城市交通科学发展之路[J]. 交通运输系统工程与信息, 2010, 10(6): 11-21.
LIU Xiaoming. Urban transportation and management—The scientific development of urban transportation in China[J]. Journal of Transportation Systems Engineering and Information Technology, 2010, 10(6): 11-21.
[2] 龚鹏飞. 道路交通突发事件分类与分级[J]. 灾害学, 2013, 28(1): 45-49.
GONG Pengfei. Classification and gradation of road traffic emergencies[J]. Journal of Catastrophology, 2013, 28(1): 45-49.
[3] 李志敏, 易良友, 薛平, 等. 基于小波分析的交通流量异常数据检测[J]. 计算机应用研究, 2011, 28(5): 1677-1678.
LI Zhimin, YI Liangyou, XUE Ping, et al. Short-term traffic flow detection based on wavelet[J]. Application Research of Computers, 2011, 28(5): 1677-1678.
[4] 商明菊, 胡尧, 周江娥. 基于改进递归小波变换的交通流异常点与变点检测算法[J]. 公路交通科技, 2019, 36(8): 133-143.
SHANG Mingju, HU Yao, ZHOU Jiang’e. An algorithm for detecting outlier and change point of traffic flow based on improved recursive wavelet transform[J]. Journal of Highway and Transportation Research and Development, 2019, 36(8): 133-143.
[5] DJENOURI Y, ZIMEK A, CHIARANDINI M. Outlier detection in urban traffic flow distributions[C]∥2018 IEEE International Conference on Data Mining (ICDM). IEEE, 2018: 935-940.
[6] KIERAN K, COLM C. Anomaly detection and classification in traffic flow data from fluctuations in the flow-density relationship[J]. Transpor-tation Research Part C: Emerging Technologies, 2021, 127: 103178.
[7] GUO Jianhua, HUANG Wei, WILLIAMS B M. Real time traffic flow outlier detection using short-term traffic conditional variance prediction[J]. Transportation Research Part C: Emerging Technologies, 2015, 50: 160-172.
[8] HASSAN M H, TIZGHADAM A, LEON-GARCIA A.Spatio-temporal anomaly detection in intelligent transportation systems[J]. Procedia Computer Science, 2019, 151: 852-857.
[9] 马书红, 杨涛, 岳敏, 等. 基于多源数据的城市群枢纽间多模式交通系统异常状态影响研究[J]. 重庆交通大学学报(自然科学版), 2023, 42(4): 98-107.
MA Shuhong, YANG Tao, YUE Min, et al. Influence of abnormal state of multi-mode transport system between hubs in urban agglomeration based on multi-source data[J]. Journal of Chongqing Jiaotong Univer-sity (Natural Science), 2023, 42(4): 98-107.
[10] LIU F T, TINGKaiming, ZHOU Zhihua. Isolation forest[C]∥2008 Eighth IEEE International Conference on Data Mining. IEEE, 2008: 413-422.
[11] ARYAL S, TING Kaiming, WELLS J R, et al. ImprovingiForest with relative mass[C]∥Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, 2014: 510-521.
[12] HARIRI S, KIND M C, BRUNNER R J. Extended isolation forest[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(4): 1479-1489.
[13] 操江能, 尚前明, 杨安声, 等. 基于优化孤立森林的船舶柴油机故障监测[J]. 船舶工程, 2021, 43(11): 125-132.
CAO Jiangneng, SHANG Qianming, YANG Ansheng, et al. The fault monitoring of marine diesel engines based on the improved isolation forest[J]. Ship Engineering, 2021, 43(11): 125-132.
[14] 杨建, 王力, 宋冬然, 等. 基于孤立森林与稀疏高斯过程回归的风电机组偏航角零点漂移诊断方法[J]. 中国电机工程学报, 2021, 41(18): 6198-6212.
YANG Jian, WANG Li, SONGDongran, et al. Diagnostic method of zero-point shifting of wind turbine yaw angle based on isolated forest and sparse Gaussian process regression[J]. Proceedings of the CSEE, 2021, 41(18): 6198-6212.
[15] WANG Hongfei, JIANG Wen, DENG Xinyang, et al. A new method for fault detection ofaero-engine based on isolation forest[J]. Measurement, 2021, 185: 110064.
[16] 徐迪, 陆煜锌, 肖勇, 等. 基于孤立森林算法的配电网线损异常判定[J]. 电力系统保护与控制, 2021, 49(16): 12-18.
XU Di, LU Yuxin, XIAO Yong, et al. Identification of abnormal line loss for a distribution power network based on an isolation forest algorithm[J]. Power System Protection and Control, 2021, 49(16): 12-18.
[17] CAMPOS G O, ZIMEK A, SANDER J, et al. On the evaluation of un-supervised outlier detection: Measures, datasets, and an empirical-study[J]. Data Mining and Knowledge Discovery, 2016, 30(4): 891-927.
[18] 合肥示范区黄科路口数据介绍[EB/OL].(2016-10-15)[2023-07-04].https:∥www.openits.cn/openData2/710.jhtml.
Introduction ofHuangke intersection data in Hefei demonstration area[EB/OL].(2016-10-15)[2023-07-04]. https:∥www.openits.cn/openData2/710.jhtml.
[19] 王飞, 徐维祥. 基于LSTM神经网络改进的路阻函数模型[J]. 浙江大学学报(工学版), 2021, 55(6): 1065-1071.
WANG Fei, XU Weixiang. Improved model of road impedance function based on LSTM neural network[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(6): 1065-1071.
[20] 王涛, 谢思红, 黎文皓, 等. 基于FFOS-ELM和PF的短时交通流自适应预测模型[J]. 重庆交通大学学报(自然科学版), 2021, 40(6): 21-27.
WANG Tao, XIE Sihong, LI Wenhao, et al. Short-term traffic flow adaptive prediction model based on FFOS-ELM and PF[J]. Journal of Chongqing Jiaotong University (Natural Science), 2021, 40(6): 21-27.
[21] ZEROUAL A, MESSAI N, KECHIDA S, et al. A piecewise switched linear approach for traffic flow modeling[J]. International Journal of Automation and Computing, 2017, 14(6): 729-741.
[22] ABDI H, WILLIAMS L J. Principal component analysis[J]. WIREs Computational Statistics, 2010, 2(4): 433-459.
[23] BREUNIG MM, KRIEGEL H P, NG R T, et al. LOF: identifying density-based local outliers[C]∥Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. Dallas Texas,USA: ACM, 2000: 1-12.
[24] KRIEGEL H P, SCHUBERT M, ZIMEK A. Angle-based outlier detection in high-dimensional data[C]∥Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Las Vegas, Nevada, USA. ACM, 2008: 444-452.
[25] SCHLKOPF B, PLATT J C, SHAWE-TAYLOR J, et al. Estimating the support of a high-dimensional distribution[J]. Neural Computa-tion, 2001, 13(7): 1443-1471. |