[1] 张农,郑敏毅,张邦基.车辆动力学[M].北京:机械工业出版社, 2020:93-105.
ZHANG Nong, ZHENG Minyi, ZHANG Bangji. Vehicle Dynamics [M]. Beijing: China Machine Press, 2020: 93-105.
[2] JAYARAMAN T, PALANISAMY S, THANGARAJ M. Hydraulic control valve integrated novel semi active roll resistant interconnected suspen-sion with vertical and roll coordinated control scheme [J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2023, 237(1): 98-111.
[3] QI Hengmin, ZHANG Bangji, ZHANG Nong, et al. Enhanced lateral and roll stability study for a two-axle bus via hydraulically intercon-nected suspension tuning [J]. SAE International Journal of Vehicle Dynamics, Stability, and NVH, 2019, 3(1): 5-18.
[4] 陈龙, 张承龙, 汪若尘, 等. 液压互联悬架能耗分析与参数优化[J]. 重庆交通大学学报(自然科学版), 2018, 37(1): 121-126.
CHEN Long, ZHANG Chenglong, WANG Ruochen, et al. Energy con-sumption analysis and parameters optimization of hydraulically interconnected suspension [J]. Journal of Chongqing Jiaotong University (Natural Science), 2018, 37(1): 121-126.
[5] 姜浩, 郑敏毅, 张农, 等. 行程敏感式液压互联悬架动力学性能分析[J]. 农业装备与车辆工程, 2023, 61(12): 89-93.
JIANG Hao, ZHENG Minyi, ZHANG Nong, et al. Dynamic performance analysis of stroke-sensitive hydraulic interconnected suspension [J]. Agricultural Equipment & Vehicle Engineering, 2023, 61(12): 89-93.
[6] 李东东, 郑敏毅, 张农, 等. 刚度阻尼可调抗侧倾液压互联悬架动力学特性研究[J]. 农业装备与车辆工程, 2023, 61(11): 45-50.
LI Dongdong, ZHENG Minyi, ZHANG Nong, et al. Dynamic characteristics of anti-roll hydraulic interconnected suspension with adjustable stiffness and damping [J]. Agricultural Equipment & Vehicle Engineering, 2023, 61(11): 45-50.
[7] 杨天宇, 郑敏毅, 陈桐, 等. 基于GABP神经网络的液压互联悬架建模研究[J]. 科学技术与工程, 2022, 22(16): 6702-6710.
YANG Tianyu, ZHENG Minyi, CHEN Tong, et al. Hydraulic intercon-nection suspension modeling based on GABP neural network [J]. Science Technology and Engineering, 2022, 22(16): 6702-6710.
[8] 赵贺雪, 张邦基, 张农, 等. 高度可调式抗侧倾液压互联悬架建模及控制策略研究[J]. 振动与冲击, 2018, 37(3): 202-209.
ZHAO Hexue, ZHANG Bangji, ZHANG Nong, et al. Modeling and control strategy for a height adjustable and anti-roll hydraulically interconnected suspension [J]. Journal of Vibration and Shock, 2018, 37(3): 202-209.
[9] 滕绯虎. 履带式装甲车悬挂优化及减振性能研究[D]. 太原: 中北大学, 2017.
TENG Feihu. Study on Optimization of Suspension and Vibration Reduction Performance of Tracked Armored Vehicle [D]. Taiyuan: North University of China, 2017.
[10] 李元芾, 邵昊南, 褚艳涛, 等. 全工况履带车协同天棚控制策略方法研究[J]. 车辆与动力技术, 2023(4): 22-27.
LI Yuanfu, SHAO Haonan, CHU Yantao, et al. Research on coopera-tive sky-hook control strategy of tracked vehicle under all working conditions [J]. Vehicle & Power Technology, 2023(4): 22-27.
[11] 李雪. 装有平衡悬架的半挂汽车列车平顺性仿真与分析[D]. 长春: 吉林大学, 2015.
LI Xue. Simulation and Analysis of Ride Comfort of the Tractor Semi-trailer with the Balanced Suspension [D]. Changchun: Jilin University, 2015.
[12] 余卓平, 王欲峰, 宁国宝, 等. 汽车液压减振器热-机耦合动力学影响因素分析[J]. 机械设计, 2007, 24(11): 29-32.
YU Zhuoping, WANG Yufeng, NING Guobao, et al. Influencing factors analysis of thermal-mechanical coupled dynamics on hydraulic damper of automobile [J]. Journal of Machine Design, 2007, 24(11): 29-32.
[13] 黄志强, 郑旺辉. Matlab实现ADAMS三维随机路面建模[J]. 现代防御技术, 2018, 46(3): 165-170.
HUANG Zhiqiang, ZHENG Wanghui. Modeling of ADAMS 3D random road with Matlab [J]. Modern Defense Technology, 2018, 46(3): 165-170.
[14] 卞美卉, 张洋, 杜志岐. 履带车辆负重轮载荷的分配与平顺性仿真[J]. 计算机仿真, 2020, 37(9): 104-108.
BIAN Meihui, ZHANG Yang, DU Zhiqi. Load-bearing wheels load distribution and ride comfort simulation of tracked vehicle [J]. Computer Simulation, 2020, 37(9): 104-108. |