[1] 张宏君. 基于路用要求的半刚性基层抗裂评价与改善措施研究[D]. 西安: 长安大学, 2009.
ZHANG Hongjun. Research on Anti-crack Evaluation and Improvement Measures of Semi-rigid Base Based on Pavement Performance Requirements[D]. Xian: Changan University, 2009.
[2] 徐鸥明, 王有贵, 陈俊宇, 等. 掺粉煤灰水泥稳定碎石收缩特性研究[J]. 重庆交通大学学报(自然科学版), 2014, 33(4): 72-75.
XU Ouming, WANG Yougui, CHEN Junyu, et al. Shrinkage properties of cement stabilized crushed stones mixed with fly-ash[J]. Journal of Chongqing Jiaotong University (Natural Science), 2014, 33(4): 72-75.
[3] 孙兆辉, 许志鸿, 王铁斌. 基于干缩变形特性的水泥稳定碎石级配组成[J]. 同济大学学报(自然科学版), 2006, 34(9): 1185-1190.
SUN Zhaohui, XU Zhihong, WANG Tiebin. Gradation composition of cement-stabilized macadam based on dry shrinkage deformation properties[J]. Journal of Tongji University (Natural Science), 2006, 34(9): 1185-1190.
[4] 李明杰, 蒋应军, 戴经梁. 水泥稳定碎石缩裂机理及在级配设计中应用[J]. 武汉理工大学学报, 2010, 32(3): 1-4.
LI Mingjie, JIANG Yingjun, DAI Jingliang. Analysis and apply of anti-cracking mechanism of cement stabilization of crushed aggregate[J]. Journal of Wuhan University of Technology, 2010, 32(3): 1-4.
[5] 胡希. 橡胶聚乙烯醇纤维复合改性水泥稳定碎石性能研究[D]. 长沙: 长沙理工大学, 2018.
HU Xi. Study on Performance of Rubber and Polyvinyl Alcohol Fiber Composite Modified Cement Stabilized Macadam[D]. Changsha: Changsha University of Science & Technology, 2018.
[6] ELDIN N N, SENOUCI A B. Rubber-tire particles as concrete aggregate[J]. Journal of Materials in Civil Engineering, 1993, 5(4): 478-496.[7] KHATIB Z K, BAYOMY F M. Rubberized Portland cement concrete[J]. Journal of Materials in Civil Engineering, 1999, 11(3): 206-213.[6] HERNNDEZ-OLIVARES F, BARLUENGA G, PARGA-LANDA B, et al. Fatigue behavior of recycled tire rubber-filled concrete and its implications in the design of rigid pavements[J]. Construction and Building Materials, 2007, 21(10): 1918-1927.
[7] 王海鹏, 王平. 橡胶粉水泥稳定粒料基层路用性能试验[J]. 公路交通科技, 2013, 30(8): 12-16.
WANG Haipeng, WANG Ping. Experiment on road performance of rubber powder cement stabilized aggregate base course[J]. Journal of Highway and Transportation Research and Development, 2013, 30(8): 12-16.
[8] 张翔飞, 钱振东, 杨若冲. 橡胶粉水泥稳定碎石收缩性能研究[J]. 现代交通技术, 2016, 13(1): 13-16.
ZHANG Xiangfei, QIAN Zhendong, YANG Ruochong. Study on the shrinkage properties of cement stabilized macadam with rubber powder[J]. Modern Transportation Technology, 2016, 13(1): 13-16.
[9] 徐国平, 庞建勇, 郑瑞琪, 等. 橡胶粒径对聚丙烯纤维混凝土力学性能的影响[J]. 重庆科技学院学报(自然科学版), 2023, 25(4): 107-112.
XU Guoping, PANG Jianyong, ZHENG Ruiqi, et al. Study on effect of rubber particle size on mechanical properties of polypropylene fiber concrete[J]. Journal of Chongqing University of Science and Technology (Natural Sciences Edition), 2023, 25(4): 107-112.
[10] 莫金旭, 曾磊, 郭帆, 等. 橡胶粉对聚丙烯纤维混凝土力学性能和微观结构的影响[J]. 建筑材料学报, 2020, 23(5): 1222-1229.
MO Jinxu, ZENG Lei, GUO Fan, et al. Effect of rubber powder on mechanical properties and microstructure of polypropylene fiber reinforced concrete[J]. Journal of Building Materials, 2020, 23(5): 1222-1229.
[11] 郑传峰, 赵大军, 邱洲, 等. 橡胶纤维水泥稳定碎石路用性能研究[J]. 公路, 2012, 57(8): 191-194.
ZHENG Chuanfeng, ZHAO Dajun, QIU Zhou, et al. Research on road performances of rubber fiber-based cement stabilized macadam[J]. Highway, 2012, 57(8): 191-194.
[12] 赵中奇. 基于新疆地区废橡胶粉水泥稳定碎石层抗裂性能研究[D]. 沈阳: 沈阳工业大学, 2021.
ZHAO Zhongqi. Research on the Anti-cracking Performance of Cement Stabilized Gravel Layer Based on Waste Rubber Powder in Xinjiang Region[D]. Shenyang: Shenyang University of Technology, 2021.
[13] 王颢翔. 抗裂嵌挤型改性橡胶粉水泥稳定碎石混合料路用性能研究[D]. 北京: 北京建筑大学, 2022.
WANG Haoxiang. Research on the Road Performance of Crack-Resistant Embedded Modified Rubber Powder Cement Stabilized Gravel Mixture[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2022.
[14] 覃峰. 橡胶粉水泥稳定碎石基层收缩性能试验研究[J]. 新型建筑材料, 2009, 36(12): 32-35.
QIN Feng. Experimental study on shrinkage properties of cement-stabilized macadam base course with rubber powder[J]. New Building Materials, 2009, 36(12): 32-35.
[15] 吕松涛, 丁星岚, 刘超超, 等. 基于界面增强的橡胶-水泥稳定碎石抗冻抗裂性能研究[J]. 长沙理工大学学报(自然科学版), 2023, 20(5): 67-75.
LYU Songtao, DING Xinglan, LIU Chaochao, et al. Study on the frost resistance and cracking resistance of rubber-cement stabilized macadams based on interface enhancement[J]. Journal of Changsha University of Science & Technology (Natural Science), 2023, 20(5): 67-75.
[16] 胡艳丽, 高培伟, 李富荣, 等. 不同取代率的橡胶混凝土力学性能试验研究[J]. 建筑材料学报, 2020, 23(1): 85-92.
HU Yanli, GAO Peiwei, LI Furong, et al. Experimental study on mechanical properties of rubber concrete with different substitution rates[J]. Journal of Building Materials, 2020, 23(1): 85-92.
[17] 吕松涛, 王双双, 王盘盘, 等. 橡胶-水泥稳定碎石持强增韧特性研究[J]. 中国公路学报, 2020, 33(11): 139-147.
LYU Songtao, WANG Shuangshuang, WANG Panpan, et al. Strength and toughness of rubber-cement stabilized macadam[J]. China Journal of Highway and Transport, 2020, 33(11): 139-147.
[18] 丁星岚. 改性橡胶-水泥稳定碎石材料的界面增强机理及性能研究[D]. 长沙: 长沙理工大学, 2022.
DING Xinglan. Study on Interfacial Enhancement Mechanism and Performance for Modified Rubber-Cement Stabilized Macadams[D]. Changsha: Changsha University of Science & Technology, 2022.
[19] 曾磊, 杨涛, 马林玲. PVA纤维橡胶混凝土力学性能及微观特征分析[J]. 长江大学学报(自然科学版), 2023, 20(6): 125-133.
ZENG Lei, YANG Tao, MA Linling. Analysis on mechanical properties and microscopic characteristics of PVA fiber rubber concrete[J]. Journal of Yangtze University (Natural Science Edition), 2023, 20(6): 125-133. |