[1] DAN Danhui, KONG Zhaowen. Bridge vehicle-induced effect influence line characteristic function based on monitoring big data: Definition and identification[J]. Structural Health Monitoring, 2023, 22(5): 2987-3005.
[2] ALAMDARI M M, KILDASHTI K, SAMALI B, et al. Damage diagnosis in bridge structures using rotation influence line: Validation on a cable-stayed bridge[J]. Engineering Structures, 2019, 185: 1-14.
[3] 周志祥, 周丰力, 楚玺. 桥梁面相学及其研究进展[J]. 重庆交通大学学报(自然科学版), 2024, 43(3): 1-9.
ZHOU Zhixiang, ZHOU Fengli, CHU Xi. Bridge physiognomy and its research progress[J]. Journal of Chongqing Jiaotong University (Natural Science), 2024, 43(3): 1-9.
[4] 邵新星, 黄金珂, 员方, 等. 基于视觉的桥梁挠度测量方法与研究进展[J]. 实验力学, 2021, 36(1): 29-42.
SHAO Xinxing, HUANG Jinke, YUAN Fang, et al. Measurement method and recent progress of vision-based deflection measurement of bridges[J]. Journal of Experimental Mechanics, 2021, 36(1): 29-42.
[5] 段大猷. 基于深度学习与计算机视觉的桥梁动态变形监测方法及应用[D]. 合肥: 合肥工业大学, 2023.
DUAN Dayou. Bridge Dynamic Deformation Monitoring Method and Application Based on Deep Learning and Computer Vision[D]. Hefei: Hefei University of Technology, 2023.
[6] ZHENG Xu, YANG Donghui, YI Tinghua, et al. Bridge influence line identification based on regularized least-squares QR decomposition method[J]. Journal of Bridge Engineering, 2019, 24(8): 06019004.
[7] OBRIEN E J, QUILLIGAN M J, KAROUMI R. Calculating an influence line from direct measurements[J]. Proceedings of the Institution of Civil Engineers-Bridge Engineering, 2006, 159(1): 31-34.
[8] YAN Wangji, YUEN Kaveng. A new probabilistic frequency-domain approach for influence line extraction from static transmissibility measurements under unknown moving loads[J]. Engineering Structures, 2020, 216: 110625.
[9] FROSETH G T, RONNQUIST A, CANTERO D, et al. Influence line extraction by deconvolution in the frequency domain[J]. Computers & Structures, 2017, 189: 21-30.
[10] CHEN Zhiwei, GUO Zhichao, REN Weixin, et al. A novel bridge influence line identification approach based on nonlinear frequency modulation signal reconstruction[J]. Mechanical Systems and Signal Processing, 2024, 219: 111622.
[11] 于新善,孟祥印,金腾飞, 等. 基于改进Canny算法的物体边缘检测算法[J].激光与光电子学进展,2023,60(22):221-230.
YU Xinshan, MENG Xiangyin, JIN Pengfei, et al. Object edge detection algorithm based on improved canny algorithm[J]. Laser & Optoelectronics Progress,2023,60(22):221-230.
[12] 曾猛杰,汪晨曦,赖俊杰,等.亚像素边缘检测算法综述[J].光学精密工程,2024,32(23):3513-3524.
ZENG Mengjie, WANG Chenxi, LAI Junjie, et al.Review of sub-pixel edge detection algorithms[J]. Optics and Precision Engineering,2024,32(23):3513-3524.
[13] CHEN S, DONG Xingjian, PENG Zhike, et al. Nonlinear chirp mode decomposition: A variational method[J]. IEEE Transactions on Signal Processing, 2017, 65(22): 6024-6037.
[14] BSI. Mechanical Vibration Road Surface Profiles Reporting of Measured Data: ISO 8608[S]. London: BSI Standards Publication, 2016.
[15] 冯东明, 黎剑安, 吴刚, 等. 考虑路面不平度的车桥耦合系统快速建模与动力分析方法[J]. 东南大学学报(自然科学版), 2022, 52(6): 1088-1094.
FENG Dongming, LI Jian’an, WU Gang, et al. Fast modeling and dynamic analysis method for vehicle-bridge interaction system considering road roughness[J]. Journal of Southeast University (Natural Science Edition), 2022, 52(6): 1088-1094. |