[1] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection [C]∥ 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016: 779-788.
[2] FARHADI A, REDMON J. Yolov3: An incremental improvement [C]∥ Computer Vision and Pattern Recognition. Berlin, Heidelberg, Germany: Springer, 2018.
[3] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection [EB/OL]. (2020-04-23)[2024-11-26].https:∥arxiv.org/pdf/2004.10934v1.
[4] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[M]∥ Computer Vision-ECCV 2020. Cham: Springer International Publishing, 2020: 213-229.
[5] 刘伟, 郝晓丽, 吕进来. 自适应混合高斯建模的高效运动目标检测[J]. 中国图象图形学报, 2020, 25(1): 113-125.
LIU Wei, HAO Xiaoli, LYU Jinlai. Efficient moving targets detection based on adaptive Gaussian mixture modelling [J]. Journal of Image and Graphics, 2020, 25(1): 113-125.
[6] 尹红娟,栾帅.三帧差分运动目标检测算法分析与验证[J].计算机与数字工程,2017,45(1):69-71.
YIN Hongjuan, LUAN Shuai. Three-image difference algorithm for moving target detection [J]. Computer and Digital Engineering, 2017, 45(1): 69-71.
[7] 何伟, 张国云, 吴健辉, 等. 结合运动边界和稀疏光流的运动目标检测方法[J]. 小型微型计算机系统, 2017, 38(3): 635-639.
HE Wei, ZHANG Guoyun, WU Jianhui, et al. Moving object detection by combining motion boundaries and sparse optical flow [J]. Journal of Chinese Computer Systems, 2017, 38(3): 635-639.
[8] 王聪, 刘明光, 齐飞. 智能视频监控系统动态目标检测与识别算法综述[J]. 电气技术, 2018, 19(9): 6-11.
WANG Cong, LIU Mingguang, QI Fei. Summary of dynamic target detection and recognition algorithm in intelligent video surveillance system [J]. Electrical Engineering, 2018, 19(9): 6-11.
[9] 张冬梅, 武杰, 李丕丁. 基于机器视觉的运动目标检测算法综述[J]. 智能计算机与应用, 2020, 10(3): 192-195, 201.
ZHANG Dongmei, WU Jie, LI Piding. A summary of moving target detection algorithm based on machine vision [J]. Intelligent Computer and Applications, 2020, 10(3): 192-195, 201.
[10] DOSOVITSKIY A, FISCHER P, ILG E, et al. FlowNet: Learning optical flow with convolutional networks [C]∥ 2015 IEEE International Conference on Computer Vision (ICCV). IEEE, 2015: 2758-2766.
[11] ALEX N, LIFLAND E, TUNSTALL L, et al. RAFT: A real-world few-shot text classification benchmark [EB/OL]. (2022-01-18)[2024-11-26]. https:∥arxiv.org/pdf/2109.14076.
[12] 张涵予. 基于双目立体视觉的融合测距算法研究[D]. 成都: 电子科技大学, 2023.
ZHANG Hanyu. Research on Fusion Ranging Algorithm Based on Binocular Vision[D]. Chengdu: University of Electronic Science and Technology of China, 2023.
[13] ZHOU Dingfu, FRMONT V, QUOST B, et al. Moving object detection and segmentation in urban environments from a moving platform [J]. Image and Vision Computing, 2017, 68: 76-87.
[14] 刘明文, 蒋涛, 袁建英, 等. 基于双目稀疏场景流的智能车运动目标检测[J]. 成都信息工程大学学报, 2023, 38(4): 381-386.
LIU Mingwen, JIANG Tao, YUAN Jianying, et al. Detection of moving objects in smart cars based on binocular sparse scene flow [J]. Journal of Chengdu University of Information Technology, 2023, 38(4): 381-386.
[15] ZHANG Chaoning, HAN Dongshen, QIAO Yu, et al. Faster segment anything: Towards lightweight SAM for mobile applications [EB/OL]. (2023-06-25)[2024-11-26]. https:∥arxiv.org/pdf/2306.14289v1. |