[1] 〖ZK(#〗〖WB〗潘义勇, 余婷, 马健霄. 基于路段与节点的城市道路阻抗函数改进[J] . 重庆交通大学学报 (自然科学版), 2017, 36(8): 76-81.〖DW〗PAN Yiyong, YU Ting, MA Jianxiao. Improvement of urban road impedance function based on section impedance and node impedance[J] . Journal of Chongqing Jiaotong University (Natural Science) , 2017, 36(8): 76-81.[2] GAO S, CHABINI I. Optimal routing policy problems in stochastic time-dependent networks[J] . Transportation Research Part B: Methodological, 2006, 40(2): 93-122.[3] WU, X., NIE, Y., Modeling heterogeneous risk-taking behavior in route choice: a stochastic dominance approach [J] . Transportation Research Part A, 2011, 45(1):896-915.[4] BELL M G H, CASSIR C. Risk-averse user equilibrium traffic assignment: an application of game theory[J] . Transportation Research Part B: Methodological, 2002, 36(8): 671-681.[5] KHANI A, BOYLES S D. An exact algorithm for the mean–standard deviation shortest path problem[J] . Transportation Research Part B: Methodological, 2015, 81(1): 252-266.[6] 潘义勇, 马健霄. 随机交通网络最小期望 -均方差路径问题罚函数解法[J] . 重庆交通大学学报 (自然科学版), 2017 (4): 98-101. 〖DW〗PANYiyong, MA Jianxiao. A penalty function algorithm for solving the mean-standard deviation shortest path problem in stochastic traffic network[J] . Journal of Chongqing Jiaotong University(Natural Science), 2017 (4): 98-101.[7] XING T, ZHOU X. Finding the most reliable path with and without link travel time correlation: A Lagrangian substitution based approach[J] . Transportation Research Part B: Methodological, 2011, 45(10): 1660-1679.[8] 潘义勇, 马健霄. 基于可靠性的随机交通网络约束最优路径问题研究[J] . 东南大学学报(自科版), 2017,47(6):1263-1268. 〖DW〗PAN Yiyong, MA Jianxiao. The constrained shortest path problem in stochastic traffic network based on the reliability[J] . Journal of Southeast University (Natural Science Edition), 2017,47(6):1263-1268.[9] 潘义勇, 孙璐. 随机交通网络环境下自适应最可靠路径问题[J] . 吉林大学学报:工学版, 2014 (6): 1622-1627. 〖DW〗PAN Yiyong and SUN Lu. Adaptive reliable shortest path problem in stochastic traffic network[J] . Journal of Jilin University (Engineering and Technolo gy Edition), 2014 (6): 1622-1627.〖ZK)〗[10] 〖ZK(#〗〖WB〗NIE Y, Wu X. Shortest path problem considering on-time arrival probability[J] . Transportation Research Part B: Methodological, 2009, 43(6): 597-613.[11] HOLTON olton G A. Value-at-risk: theory and practice[M] . New York: Academic Press, 2003.[12] 潘义勇, 马健霄, 孙璐. 基于可靠度的动态随机交通网络耗时最优路径[J] . 吉林大学学报 (工学版), 2016, 46(2): 412-417.〖DW〗PAN yiyong, MA Jianxiao, Sun Lu. Optimal path in dynamic network with random link travel times based on reliability[J] . Journal of Jilin University (Engineering and Technology Edition), 2016, 46(2): 412-417. [1] 潘义勇, 余婷, 马健霄. 基于路段与节点的城市道路阻抗函数改进[J]. 重庆交通大学学报 (自然科学版), 2017, 36(8): 76-81.
PAN Yiyong, YU Ting, MA Jianxiao. Improvement of urban road impedance function based on section impedance and node impedance[J]. Journal of Chongqing Jiaotong University (Natural Science), 2017, 36(8): 76-81.
[2] GAO S, CHABINI I. Optimal routing policy problems in stochastic time-dependent networks [J].Transportation Research Part B: Methodological, 2006, 40(2): 93-122.
[3] WU Xing, NIE Yu, Modeling heterogeneous risk-taking behavior in route choice: a stochastic dominance approach [J]. Transportation Research Part A, 2011, 45:896-915.
[4] BELL M G H, CASSIR C. Risk-averse user equilibrium traffic assign-
ment: an application of game theory [J]. Transportation Research Part B: Methodological, 2002, 36(8): 671-681.
[5] KHANI A, BOYLES S D. An exact algorithm for the mean-standard deviation shortest path problem [J]. Transportation Research Part B: Methodological, 2015, 49(4): 252-266.
[6] 潘义勇,马健霄.随机交通网络最小期望-均方差路径问题罚函数解法[J]. 重庆交通大学学报 (自然科学版), 2017, 36 (4): 96-101.
PAN Yiyong, MA Jianxiao. A penalty function algorithm for solving the mean-standard deviation shortest path problem in stochastic traffic network[J]. Journal of Chongqing Jiaotong University (Natural Science), 2017, 36 (4): 96-101.
[7] XING T, ZHOU X. Finding the most reliable path with and without link travel time correlation: A Lagrangian substitution based approach[J]. Transportation Research Part B: Methodological, 2011, 45(10): 1660-1679.
[8] 潘义勇, 马健霄. 基于可靠性的随机交通网络约束最优路径问题研究[J]. 东南大学学报(自然科学版),2017,47 (6): 1263-1268.
PAN Yiyong, MA Jianxiao. The constrained shortest path problem in stochastic traffic network based on the reliability [J]. Journal of Southeast University (Natural Science Edition), 2017, 47(6): 1263-1268.
[9] 潘义勇, 孙璐. 随机交通网络环境下自适应最可靠路径问题[J]. 吉林大学学报(工学版), 2014, 44(6): 1622-1627.
PAN Yiyong, SUN Lu. Adaptive reliable shortest path problem in stoch-
astic traffic network [J]. Journal of Jilin University (Engineering and Technology Edition), 2014, 44(6): 1622-1627.
[10] NIE Y, WU X. Shortest path problem considering on-time arrival probability[J]. Transportation Research Part B, 2009, 43(6):597-613.
[11] HOLTON G A. Value-at-risk: Theory and Practice [M]. New York: Academic Press, 2003.
[12] 潘义勇, 马健霄, 孙璐. 基于可靠度的动态随机交通网络耗时最优路径[J]. 吉林大学学报 (工学版), 2016, 46(2): 412 - 417.
PAN Yiyong, MA Jianxiao, SUN Lu. Optimal path in dynamic network with random link travel times based on reliability [J]. Journal of Jilin University (Engineering and Technology Edition), 2016, 46(2): 412-417.
[13] 邬岚, 陈学武, 陆涛. 基于快速公交系统不同配置的潜在客流分析[J] . 东南大学学报(自然科学版), 2014, 44(6):1299-1303.
WU Lan, CHEN Xuewu, LU Tiao. Potential ridership analysis based on different configurations of BRT[J] . Journal of Southeast University( Natual Science Edition), 2014, 44(6):1299-1303. |