[1] 公安部办公厅统计处. 2022年全国机动车和驾驶人统计分析[J]. 公安研究, 2023(2): 95-96.
Statistics Department,General Office of the Ministry of Public Security. A statistical analysis of motor vehicles and drivers nationwide in 2022[J]. Policing Studies, 2023(2): 95-96.
[2] 王晔, 王峰, 贾海蓉, 等. 结合人脸关键点与光流特征的微表情识别[J]. 激光杂志, 2023, 44(5): 72-77.
WANG Ye, WANG Feng, JIA Hairong, et al. Micro-expression recognition combining facial key points and optical flow features[J]. Laser Journal, 2023, 44(5): 72-77.
[3] 林浩, 李雷孝, 王慧. 支持向量机在智能交通系统中的研究应用综述[J]. 计算机科学与探索, 2020, 14(6): 901-917.
LIN Hao, LI Leixiao, WANG Hui. Survey on research and application of support vector machines in intelligent transportation system[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(6): 901-917.
[4] 刘伟, 郝晓丽, 吕进来. 自适应混合高斯建模的高效运动目标检测[J]. 中国图象图形学报, 2020, 25(1): 113-125.
LIU Wei, HAO Xiaoli, LYU Jinlai. Efficient moving targets detection based on adaptive Gaussian mixture modelling[J]. Journal of Image and Graphics, 2020, 25(1): 113-125.
[5] 赵加坤, 孙俊, 韩睿, 等. 基于改进的Faster Rcnn遥感图像目标检测[J]. 计算机应用与软件, 2022, 39(5): 192-196.
ZHAO Jiakun, SUN Jun, HAN Rui, et al. Object detection based on improved Faster Rcnn for remote sensing image[J]. Computer Applications and Software, 2022, 39(5): 192-196.
[6] SHI Qingxin, LI Changsheng, GUO Baoqiao, et al. Manipulator-based autonomous inspections at road checkpoints: Application of faster YOLO for detecting large objects[J]. Defense Technology, 2022, 18(6): 937-951.
[7] 郭克友, 王苏东, 李雪, 等. 基于Dim env-YOLO算法的昏暗场景车辆多目标检测[J]. 计算机工程, 2023, 49(3): 312-320.
GUO Keyou, WANG Sudong, LI Xue, et al. Multi-target detection of vehicles in dim scenes based on Dim env-YOLO algorithm[J]. Computer Engineering, 2023, 49(3): 312-320.
[8] 廖慕钦, 周永军, 汤小红, 等. 基于SSD-MobilenetV3模型的车辆检测[J]. 传感器与微系统, 2022, 41(6): 142-145.
LIAO Muqin, ZHOU Yongjun, TANG Xiaohong, et al. Vehicle detection based on SSD-MobileNetV3 model[J]. Transducer and Microsystem Technologies, 2022, 41(6): 142-145.
[9] 徐浩, 杨德刚, 蒋倩倩, 等. 基于SSD的轻量级车辆检测网络改进[J]. 计算机工程与应用, 2022, 58(12): 209-217.
XU Hao, YANG Degang, JIANG Qianqian, et al. Improvement of lightweight vehicle detection network based on SSD[J]. Computer Engineering and Applications, 2022, 58(12): 209-217.
[10] 龙赛, 宋晓凤, 张苏, 等. 改进YOLOv5s的航拍图像车辆检测研究[J]. 激光杂志, 2022, 43(10): 22-29.
LONG Sai, SONG Xiaofeng, ZHANG Su, et al. Research on vehicle detection in aerial images with improved YOLOv5s[J]. Laser Journal, 2022, 43(10): 22-29.
[11] 梁秀满, 安金铭, 曹晓华, 等. 基于改进MobileNetV3烧结断面火焰图像识别[J]. 电子测量技术, 2023, 46(14): 182-187.
LIANG Xiuman, AN Jinming, CAO Xiaohua, et al. Flame image recognition of sintering section based on improved MobileNetV3[J]. Electronic Measurement Technology, 2023, 46(14): 182-187.
[12] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]// International Conference on Learning Representations 2015, San Diego, CA, 2015.
[13] 冯杨, 刘蓉, 鲁甜. 基于小尺度核卷积的人脸表情识别[J]. 计算机工程, 2021, 47(4): 262-267.
FENG Yang, LIU Rong, LU Tian. Facial expression recognition based on small-scale kernel convolution[J].Computer Engineering, 2021, 47(4): 262-267.
[14] 裴少通, 张善驰. 基于改进YOLOv5s的架空输电线路鸟类入侵检测方法[J]. 智慧电力, 2023, 51(6): 100-105.
PEI Shaotong, ZHANG Shanchi. Bird invasion detection method for overhead transmission lines based on improved YOLOv5s[J]. Smart Power, 2023, 51(6): 100-105.
[15] WEN Longyin, DU Dawei, CAI Zhaowei, et al. UA-DETRAC: A new benchmark and protocol for multi-object detection and tracking[J]. Computer Vision and Image Understanding, 2020, 193: 102907. |