Solutions to the Problem of Wave Refraction Based on
Approximation Using Radial Basis Function
XU Xibin1, SHU Zhongyi1, XU Jiqing1,2
(1. School of River & Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China;
2. National Engineering Technology Research Center for Inland Waterway Regulations, Key Laboratory of Hydraulic &
Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China)
Abstract:Wave has features of three-dimension, stochasticity and nonlinearity, whose boundary conditions are complex, so wave refraction equation is difficult to solve. The radial basis function has the advantages of simple form, isotropic and space dimension independence. Considering the above, a new numerical method for solving the wave refraction problem was constructed by combining the idea of the radial basis function approximation with the wave refraction equation and considering its derivative boundary condition. In the actual project, the proposed algorithm provides a new idea to solve the numerical solution of wave refraction.
许锡宾1,束仲祎1,徐绩青1,2. 基于径向基函数逼近的波浪折射问题求解[J]. 重庆交通大学学报(自然科学版), 2020, 39(11): 109-113.
XU Xibin1, SHU Zhongyi1, XU Jiqing1,2. Solutions to the Problem of Wave Refraction Based on
Approximation Using Radial Basis Function. Journal of Chongqing Jiaotong University(Natural Science), 2020, 39(11): 109-113.
[1] 蒋德才,台伟涛,楼顺里.海浪能量谱的折绕射研究Ⅰ:缓坡上的联合模型[J].海洋学报,1993,15(2):84-86.
JIANG Decai, TAI Weitao, LOU Shunli. Research on refraction and diffraction of wave energy spectrum: Joint model on slow slope [J]. Acta Oceanologica Sinica, 1993, 15(2): 84-86.
[2] 梁林.基于广义有限差分法模拟缓坡方程[D].福州:福州大学,2017.
LIANG Lin.Generalized Finite Difference Method for Mild-Slope Equation [D]. Fuzhou: Fuzhou University, 2017.
[3] 任聿飞.基于广义有限差分法分析二维自由水面波动问题[D].福州:福州大学,2016.
REN Yufei.Generalized Finite Difference Method for Two Dimensional Free-Surface Problems of Water-Wave [D]. Fuzhou: Fuzhou University, 2016.
[4] 吴宗敏.径向基函数、散乱数据拟合与无网格偏微分方程数值解[J].工程数学学报,2002,19(2):1-12.
WU Zongmin. Radial basis function scattered data interpolation and the meshless method of numerical solution of PDEs [J]. Chinese Journal of Engineering Mathematics, 2002, 19(2): 1-12.
[5] 马利敏.径向基函数逼近中的若干理论、方法及其应用[D].上海:复旦大学,2009.
MA Limin.Some Theory, Methods and Application in RBF Approa-ching[D]. Shanghai: Fudan University, 2009.
[6] 祖福兴,徐绩青,李岩汀.强非线性梁求解的径向基函数方法[J].重庆交通大学学报(自然科学版),2018, 37(12):55-60.
ZU Fuxing, XU Jiqing, LI Yanting. Radial basis functions methods for strongly nonlinear beam[J]. Journal of Chongqing Jiaotong University(Natural Science), 2018, 37(12): 55-60.
[7] 张雄,刘岩.无网格法[M].北京:清华大学出版社,2004.
ZHANG Xiong, LIU Yan. Meshless Method [M]. Beijing: Tsinghua University Press, 2004.
[8] 徐绩青,李正良,吴林键.基于径向基函数逼近的结构动力响应计算方法[J].应用数学和力学,2014,35(5):533-541.
XU Jiqing, LI Zhengliang, WU Linjian. Acalculation method for structural dynamic responses based on the approximation theory of radial basis function [J]. Applied Mathematics and Mechanics, 2014, 35(5): 533-541.
[9] 王树青,梁丙臣.海洋工程波浪力学[M].青岛:中国海洋大学出版社,2013.
WANG Shuqing, LIANG Bingchen. Wave Mechanics of Ocean Engineering [M]. Qingdao: China Ocean University Press, 2013.
[10] 邹志利.海岸动力学[M].4版.北京:人民交通出版社,2009.
ZOU Zhili.Coastal Dynamics [M]. 4th ed. Beijing: China Communi-cations Press, 2009.
[11] 邱大洪.波浪理论及其在工程上的应用[M].北京:高等教育出版社,1985.
QIU Dahong.Wave Theory and Application in Engineering [M]. Beijing: Higher Education Press, 1985.