中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

重庆交通大学学报(自然科学版) ›› 2025, Vol. 44 ›› Issue (11): 36-43.DOI: 10.3969/j.issn.1674-0696.2025.11.05

• 交通运输+人工智能 • 上一篇    

基于动态贝叶斯的LPG铁路罐车运输泄漏风险分析

张玉召1,2,常全盛1,2,石古乐1,沈要光3   

  1. (1. 兰州交通大学 交通运输学院,甘肃 兰州 730070; 2. 高原铁路运输智慧管控铁路行业重点实验室,甘肃 兰州 730070; 3. 河南工程学院 商学院,河南 郑州 451191)
  • 收稿日期:2023-10-07 修回日期:2025-03-22 发布日期:2025-11-27
  • 作者简介:张玉召(1981—),男,安徽砀山人,教授,博士,主要从事铁路客货运技术与管理方面的研究。E-mail:yuzhaozhang@126.com 通信作者:常全盛(1999—),男,山西大同人,硕士研究生,主要从事铁路运输组织与安全保障方面的研究。E-mail:chang123452022@163.com
  • 基金资助:
    国家自然科学基金项目(71761025);中国国家铁路集团有限公司科技研究计划重大课题项目(P2021S012);甘肃省教育厅双一流重大科研项目(GSSYLXM-04)

Risk Analysis of LPG Railway Tanker Transportation Leakage Based on Dynamic Bayesian Networks

ZHANG Yuzhao1,2, CHANG Quansheng1,2, SHI Guyue1, SHEN Yaoguang3   

  1. (1. School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China; 2. Key Laboratory of Railway Industry on Plateau Railway Transportation Intelligent Management and Control, Lanzhou 730070, Gansu, China; 3. School of Business, Henan University of Engineering, Zhengzhou 451191, Henan, China)
  • Received:2023-10-07 Revised:2025-03-22 Published:2025-11-27

摘要: 为揭示液化石油气铁路罐车运输风险的时序演化规律,提出了一种融合时间维度的动态贝叶斯网络风险评估模型。通过蝴蝶结模型集成事故树与事件树分析方法,构建运输泄漏事故的静态风险拓扑结构,并引入时间参数表征风险动态传递特性;基于GeNIe平台开展数值仿真与逆向推理。研究结果表明:①初始状态下泄漏事故概率为13.43%,若未进行干预,4 h后概率增长至48.13%;②泄漏后更容易引发爆炸事故,且风险呈非线性递增趋势,4 h内发生事故的概率由4.18%提升至14.99%;③安全附件和设备失效与罐内压强异常是泄露事故的关键因素。研究证实动态贝叶斯网络可量化表征危险货物运输系统的时变风险,为泄漏事故的动态预警与干预决策提供理论支撑。

关键词: 交通运输工程;液化石油气;风险分析;泄漏事故;动态贝叶斯网络;演变过程

Abstract: To reveal the temporal evolution patterns of risks in liquefied petroleum gas (LPG) railway tanker transportation, a dynamic Bayesian network risk assessment model integrated with temporal dimensions was proposed. By employing a bow-tie model to unify fault tree analysis and event tree analysis method, a static risk topology structure for transportation leakage accidents was constructed, incorporating temporal parameters to characterize dynamic risk propagation. Based on GeNIe platform, numerical simulations and backward reasoning were conducted. Research results show that: ①the probability of leakage accident in initial state is 13.43%, escalating to 48.13% after 4 h without intervention; ②explosion accidents are more likely to occur after leakage, and the risks exhibit nonlinear escalation, with accident probability occurring within 4 hours increasing from 4.18% to 14.99%;③safety accessory/equipment failures and abnormal tanker pressure emerge as critical causative factors of leakage. The research demonstrates that dynamic Bayesian networks can effectively quantify time-varying risks of hazardous material transportation systems, providing theoretical support for dynamic early warning and intervention decision-making in leakage accidents.

Key words: traffic and transportation engineering; liquefied petroleum gas; risk analysis; leakage accident; dynamic Bayesian network; evolutionary process

中图分类号: