[1] 岳文静, 杜丽敬, 陈先锋, 等. 基于DBN的气体泄漏事故情景推演与节点分析[J]. 中国安全科学学报, 2022, 32(增刊1): 165-170.
YUE Wenjing, DU Lijing, CHEN Xianfeng, et al. Scenario deduction and node analysis of gas leakage accident based on DBN[J]. China Safety Science Journal, 2022, 32(Sup 1): 165-170.
[2] 黄文成, 帅斌, 孙妍, 等. 熵-TOPSIS-耦合协调法评价铁路危险品运输系统风险[J]. 中国安全科学学报, 2018, 28(2): 134-138.
HUANG Wencheng, SHUAI Bin, SUN Yan, et al. Evaluation of risk in railway dangerous goods transportation system by integrated entropy-TOPSIS-coupling coordination method[J]. China Safety Science Journal, 2018, 28(2): 134-138.
[3] HUANG Wencheng, LIU Hongyi, ZHANG Yue, et al. Railway dangerous goods transportation system risk identification: Comparisons among SVM, PSO-SVM, GA-SVM and GS-SVM[J]. Applied Soft Computing, 2021, 109: 107541.
[4] 黄文成, 帅斌, 孙妍. 基于N-K模型的铁路危险品运输系统耦合风险形成机理研究[J]. 铁道学报, 2019, 41(5): 1-9.
HUANG Wencheng, SHUAI Bin, SUN Yan. Study on coupling risk formation mechanism of railway dangerous goods transportation system based on N-K model[J]. Journal of the China Railway Society, 2019, 41(5): 1-9.
[5] 张文会, 马俊, 罗文文, 等. 基于可拓学的事故路段风险等级识别模型[J]. 重庆交通大学学报(自然科学版), 2016, 35(1): 107-110.
ZHANG Wenhui, MA Jun, LUO Wenwen, et al. Identification model for risk level of traffic accident section based on extension science[J]. Journal of Chongqing Jiaotong University (Natural Science), 2016, 35(1): 107-110.
[6] 李志慧, 孙雅倩, 陶鹏飞, 等. 交通事故后的交通运行风险状态等级预测方法[J]. 吉林大学学报(工学版), 2022, 52(1): 127-135.
LI Zhihui, SUN Yaqian, TAO Pengfei, et al. Prediction method of traffic operation risk level after traffic accident[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(1): 127-135.
[7] 袁振洲, 胡嫣然, 杨洋. 考虑多维动态特征交互的高速公路实时事故风险建模[J]. 交通运输系统工程与信息, 2022, 22(3): 215-223.
YUAN Zhenzhou, HU Yanran, YANG Yang. Modeling towards freeway real-time traffic crash prediction considering multi-dimensional dynamic featureinteractions[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(3): 215-223.
[8] 韩梅, 吴珊, 常青, 等. 基于事故树和模糊贝叶斯网络的铁路超限货物运输风险评估[J]. 铁道学报, 2021, 43(5): 9-17.
HAN Mei, WU Shan, CHANG Qing, et al. Risk assessment of railwayout-of-gauge goods transportation based on fault tree and fuzzy Bayesian network[J]. Journal of the China Railway Society, 2021, 43(5): 9-17.
[9] 成卫,马铭炜,张小龙. 基于贝叶斯网络的高速公路交通事故严重程度预测及致因分析[J]. 重庆交通大学学报(自然科学版), 2023, 42(7): 87-95.
CHENG Wei, MA Mingwei, ZHANG Xiaolong. Prediction andcause analysis of freeway traffic accident severity based on Bayesian network [J]. Journal of Chongqing Jiaotong University (Natural Science), 2023, 42(7): 87-95.
[10] GUO Xiaoxue, JI Jie, KHAN F, et al. Fuzzy Bayesian network based on an improved similarity aggregation method for risk assessment of storage tank accident[J]. Process Safety and Environmental Protection, 2021, 149: 817-830.
[11] EBRAHIMI H, SATTARI F, LEFSRUD L, et al. Human vulnerability modeling and risk analysis of railway transportation of hazardous materials[J]. Journal of Loss Prevention in the Process Industries, 2022, 80: 104882.
[12] 郑时求, 周荣义, 杨璧帆, 等. 危化品槽罐车运输事故关键致因及传递路径研究[J]. 中国安全科学学报, 2023, 33(4): 172-178.
ZHENG Shiqiu, ZHOU Rongyi, YANG Bifan, et al. Research on key causes and transmission paths of hazardous chemicals tank truck transportation accidents[J]. China Safety Science Journal, 2023, 33(4): 172-178.
[13] 中国铁路总公司. 铁路危险货物运输管理规则[M]. 北京: 中国铁道出版社, 2017: 31-36.
China State Railway Group Co.,Ltd.. Railway Dangerous Goods Transportation Management Rules[M]. Beijing: China Railway Publishing House, 2017: 31-36.
[14] DAS S, GARG A, MAITI J, et al. A comprehensive methodology for quantification of Bow-Tie under type II fuzzy data[J]. Applied Soft Computing, 2021, 103: 107148.
[15] 陈军, 兀亚伟, 李垣志, 等. 基于动态贝叶斯网络的燃气管网燃爆风险分析[J]. 北京理工大学学报, 2021, 41(7): 696-705.
CHEN Jun, WU Yawei, LI Yuanzhi, et al. Risk analysis of burning and explosion of gas pipeline network based on dynamic Bayesian network[J]. Transactions of Beijing Institute of Technology, 2021, 41(7): 696-705.
[16] QIU Zeyang, LIANG Wei, ZHANG Laibin. Tracing and prediction analysis of an urban pipeline leakage accident based on the catastrophe DBN model[J]. Journal of Natural Gas Science and Engineering, 2018, 57: 339-348.
[17] 中国铁道企业管理协会运输委员会. 铁路危险货物运输事故案例[M]. 北京: 中国铁道出版社, 2009.
China Railway Enterprise Management Association. Case of Railway Dangerous Goods Transportation Accident[M]. Beijing: China Railway Publishing House, 2009.
[18] 杨能普, 杨月芳, 冯伟. 基于模糊贝叶斯网络的铁路危险货物运输过程风险评估[J]. 铁道学报, 2014, 36(7): 8-15.
YANG Nengpu, YANG Yuefang, FENG Wei. Risk assessment of railway dangerous goods transport process based on fuzzy Bayesian network[J]. Journal of the China Railway Society, 2014, 36(7): 8-15.
[19] 王沁彦, 张伯君, 业成, 等. 基于故障树的LPG罐车罐体失效分析[J]. 装备制造技术, 2019(8): 92-96.
WANG Qinyan, ZHANG Bojun, YE Cheng, et al. Failure analysis of LPG tank based on FTA[J]. Equipment Manufacturing Technology, 2019(8): 92-96.
[20] 黄定仪. 液化气体铁路罐车泄漏事故发生规律及对运输安全影响研究[D]. 北京: 北京交通大学, 2017.
HUANG Dingyi. Study on the Law of Leakage Accident of Liquefied Gas Railway Tank Car and Its Influence on Transportation Safety[D]. Beijing: Beijing Jiaotong University, 2017. |