中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

Journal of Chongqing Jiaotong University(Natural Science) ›› 2015, Vol. 34 ›› Issue (5): 170-174.DOI: 10.3969/j.issn.1674-0696.2015.05.34

• Vehicle & Electromechanical Engineering • Previous Articles     Next Articles

SOC Estimation of the Electric Vehicle Li-ion Battery Based on Six-Parameter RC Circuit Equivalent Model

Huang Bingfeng1,2, Yang Zhengcai1, Fu Jiahong3   

  1. 1. Hubei Key Laboratory of Automotive Power Train & Electronics, Hubei University of Automotive Technology, Shiyan 442002, Hubei, China; 2. State Key Laboratory of Automotive Simulation & Control, Jilin University, Changchun 130022, Jilin, China;3. School of Information Science & Engineering, Wuhan University of Science & Technology, Wuhan 430081, Hubei, China
  • Received:2014-01-02 Revised:2014-03-24 Online:2015-11-04 Published:2015-11-04

基于六参数RC等效电路模型的锂离子电池SOC估计

黄兵锋1,2 ,杨正才1 ,傅佳宏3   

  1. 1.湖北汽车工业学院 汽车工程学院 汽车动力传动与电子控制湖北省重点实验室,湖北 十堰 442002;2.吉林大学 汽车工程学院 汽车仿真与控制国家重点实验室,吉林 长春 130022;3.武汉科技大学 信息科学与工程学院,湖北 武汉 430081
  • 作者简介:黄兵锋(1977—),男,湖北枝江人,讲师,硕士,主要从事汽车动力学方面的研究。E-mail:ycdt@sohu.com。
  • 基金资助:
    湖北省重点实验室开放基金项目计划(ZDK201206)

Abstract: In order to improve the estimation accuracy of state of charge (SOC) for Li-ion battery commonly used in electric vehicles, a battery model was first proposed which was equivalent to a six-parameter RC circuit. The extended Kalman filter (EKF) was then employed to estimate the SOC while dealing with the nonlinearity of the battery model. Further to cope with the disturbances caused by unknown and random noises, an adaptive extended Kalman filter (AEKF) algorithm was introduced which estimated the statistical attributes of the noises for the purpose to adaptively adjust the SOC estimation. Simulation results show that the AEKF algorithm is more robust to the external disturbances, although both EKF and AEKF algorithms have quite accurate SOC estimation.

Key words: vehicle engineering, electric vehicle, Li-ion battery, state of charge(SOC), adaptive Kalman filter

摘要: 为提高电动车锂离子动力电池荷电状态(SOC)的估算精度,提出了一种基于六参数RC等效电路的电池模型,采用扩展卡尔曼滤波开展对电池SOC的估算方法研究。在考虑未知干扰和环境噪声的影响下,进一步提出了在扩展卡尔曼滤波的基础上的自适应卡尔曼滤波算法,并开展了对电池SOC的在线估算。仿真结果表明:虽然扩展卡尔曼滤波和自适应卡尔曼滤波都对电池SOC有较好的估算精度,但在未知干扰和噪声的影响下自适应卡尔曼滤波具有更好的鲁棒性。

关键词: 车辆工程, 电动车, 锂离子电池, 荷电状态, 自适应卡尔曼滤波

CLC Number: