[1] 路向阳, 李雷, 雷成健,等. 城市轨道交通全自动驾驶技术发展综述[J].机车电传动,2018(1):6-12.
LU Xiangyang, LI Lei, LEI Chengjian, et al. A review of the development of urban railway transport full automatic operation technology[J]. Electric Drive for Locomotives, 2018(1):6-12.
[2] 孟建军,张宏强.基于改进灰色预测模糊 PID 控制的列车多目标优化研究[J].铁道标准设计, 2020, 64(5): 173-181.
MENG Jianjun, ZHANG Hongqiang. A study on multi-objective train optimization based on improved grey prediction fuzzy PID control[J]. Railway Standard Design, 2020, 64(5): 173-181.
[3] 李德仓, 孟建军, 郝帅,等. 基于模糊自适应 PID 的列车智能驾驶算法 [J]. 兰州交通大学学报, 2018, 37(4): 27-33.
LI Decang, MENG Jianjun, HAO Shuai, et al. An intelligent train operation based on fuzzy adaptive PID[J]. Journal of Lanzhou Jiaotong University, 2018,37(4):27-33.
[4] 戈萌, 宋琦, 胡鑫睿. 高速列车非线性系统的分数阶有限时间控制器设计[J]. 自动化学报, 2021, 47(7): 1672-1678.
GE Meng, SONG Qi, HU Xinrui. Design of a fractional-order finite-time controller for high-speed train with uncertain model and actuator failures[J]. Acta Automatica Sinica, 2021, 47(7): 1672-1678.
[5] 徐传芳. 高速列车的有限时间容错跟踪控制[J]. 铁道学报, 2021, 43(11):69-77.
XU Chuanfang, Finite-time fault-tolerant tracking control for high-speed trains[J]. Journal of the China Railway Society, 2021, 43(11): 69-77.
[6] 何之煜, 杨志杰, 吕旌阳. 基于自适应模糊滑模的列车精确停车制动控制算法[J]. 中国铁道科学, 2019, 40(2): 122-129.
HE Zhiyu, YANG Zhijie, LYU Jingyang. Braking control algorithm for accurate train stoping based on adaptive fuzzy sliding mode[J]. China Railway Science, 2019, 40(2): 122-129.
[7] GE M, SONG Q, HU X R, et al. RBFNN-based fractional-order control of high-speed train with uncertain model and actuator failures[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(9): 3883-3892.
[8] 董昱, 魏万鹏. 基于 RBF 神经网络 PID 控制的列车 ATO 系统优化[J].电子测量与仪器学报, 2021, 35(1): 103-109.
DONG Yu, WEI Wanpeng. Optimization of train ATO system based on RBF neural network PID control[J]. Journal of Electronic Measurement and Instrumentation, 2021,35(1):103-109.
[9] ANDRIEU V, PRALY L, ASTOLFI A. Homogeneous approximation, recursive observer design, and output feedback[J]. SIAM Journal on Control and Optimization, 2008, 47(4): 1814-1850.
[10] POLYAKOV A. Nonlinear feedback design for fixed-time stabilization of linear control systems [J]. IEEE Transactions on Automatic Control, 2012, 57(8): 2106-2110.
[11] 刘朝涛, 刘浩鸣, 杜子学,等. 跨座式单轨智能编组固定时间协同控制研究[J]. 重庆交通大学学报(自然科学版), 2023, 42(9): 106-112.
LIU Chaotao, LIU Haoming, DU Zixue, et al. Fixed time cooperative control of straddle monorail intelligent marshalling[J]. Journal of Chongqing Jiaotong University (Natural Science), 2023, 42(9): 106-112.
[12] BA D, LI Y, TONG S. Fixed-time adaptive neural tracking control for a class of uncertain nonstrict nonlinear systems[J]. Neurocomputing, 2019, 363:273-280.
[13] JIANG B, HU Q, FRISWELL M I. Fixed-time attitude control for rigid spacecraft with actuator saturation and faults[J]. IEEE Transactions on Control Systems technology,2016, 24 (5): 1892-1898.
[14] 刘宜成, 熊宇航, 杨海鑫. 基于RBF神经网络的多关节机器人固定时间滑模控制[J]. 控制与决策, 2022, 37(11): 2790-2798.
LIU Yicheng, XIONG Yuhang, YANG Haixin. Fixed-time sliding mode control of multi-joint robot based on RBF neural network[J]. Control and Decision, 2022, 37(11): 2790-2798.
[15] TRAN M D, KANG H J. A novel adaptive finite-time tracking control for robotic manipulators using nonsingular terminal sliding mode and RBF neural networks[J]. International Journal of Precision Engineering and Manufacturing, 2016, 17(7): 863-870. |