[1] 曹家乐, 李亚利, 孙汉卿, 等. 基于深度学习的视觉目标检测技术综述[J]. 中国图象图形学报, 2022, 27(6): 1697-1722.
CAO Jiale, LI Yali, SUN Hanqing, et al. A survey on deep learning based visual object detection[J]. Journal of Image and Graphics, 2022, 27(6): 1697-1722.
[2] DONG Chao, ZHANG Ke, XIE Zhiyuan, et al. An improved cascade RCNN detection method for key components and defects of transmission lines[J].IET Generation, Transmission & Distribution, 2023, 17(19): 4277-4292.
[3] WANG Xiaolong, SHRIVASTAVA A, GUPTA A. A-fast-RCNN: Hard positive generation via adversary for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA. IEEE, 2017: 3039-3048.
[4] LIU Rui, YU Zhihua, MO Daili, et al. An improved faster-RCNN algorithm for object detection in remote sensing images[C]//2020 39th Chinese Control Conference (CCC). Shenyang, China. IEEE, 2020: 7188-7192.
[5] 刘毅, 于畅洋, 李国燕, 等. UAST-RCNN: 遮挡行人的目标检测算法[J]. 电子测量与仪器学报, 2022, 36(12): 168-175.
LIU Yi, YU Changyang, LI Guoyan, et al. UAST-RCNN: Object detection algorithm for blocking pedestrians[J].Journal of Electronic Measurement and Instrumentation, 2022, 36(12): 168-175.
[6] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]//Computer Vision-ECCV 2016. Cham: Springer International Publishing, 2016: 21-37.
[7] JIANG Peiyuan, ERGU Daji, LIU Fangyao, et al. A review of yolo algorithm developments[J].Procedia Computer Science, 2022, 199: 1066-1073.
[8] 帅泽群, 李军, 张世义. 适合车载边缘计算的拥挤行人检测算法[J]. 计算机工程与应用, 2023, 59(4): 156-164.
SHUAI Zequn, LI Jun, ZHANG Shiyi.Crowded pedestrian detection algorithm suitable for vehicle edge computing[J]. Computer Engineering and Applications, 2023, 59(4): 156-164.
[9] 邓天民, 刘金凤, 王春霞, 等. 基于内容感知重组特征的车辆行人检测算法[J]. 重庆交通大学学报(自然科学版), 2023, 42(10): 132-141.
DENG Tianmin, LIU Jinfeng, WANG Chunxia, et al. Vehicle andpedestrian detection algorithm based on content-aware reassembly of features[J]. Journal of Chongqing Jiaotong University (Natural Science), 2023, 42(10): 132-141.
[10] 杨晓寒, 王峻, 段中兴, 等. 基于改进YOLOx的弱光照环境车辆检测方法[J]. 液晶与显示, 2024, 39(6): 801-812.
YANG Xiaohan, WANG Jun, DUAN Zhongxing, et al.Improved YOLOx-based vehicle detection method for low light environment[J]. Chinese Journal of Liquid Crystals and Displays, 2024, 39(6): 801-812.
[11] 邓超, 马俊杰, 严毅, 等. 基于轻量级神经网络的车辆识别算法研究[J]. 重庆交通大学学报(自然科学版), 2024, 43(4): 80-87.
DENG Chao, MA Junjie, YAN Yi, et al. Vehicle identification algorithms based on lightweight neural networks[J].Journal of Chongqing Jiaotong University (Natural Science), 2024, 43(4): 80-87.
[12] WANG Yuhai, XU Shuobo, WANG Peng, et al. Vehicle detection algorithm based on improved RT-DETR[J].The Journal of Supercomputing, 2024, 81(1): 290.
[13] HAN Kai, WANG Yunhe, TIAN Qi, et al. GhostNet: More features from cheap operations[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020, Seattle, WA, USA. IEEE, 2020: 1577-1586.
[14] KOTHALA L P, JONNALA P, GUNTUR S R. Localization of mixed intracranial hemorrhages by using a ghost convolution-based YOLOnetwork[J]. Biomedical Signal Processing and Control, 2023, 80: 104378.
[15] 李松, 史涛, 井方科. 改进YOLOv8的道路损伤检测算法[J]. 计算机工程与应用, 2023, 59(23): 165-174.
LI Song, SHI Tao, JING Fangke. Improved road damage detection algorithm of YOLOv8[J].Computer Engineering and Applications, 2023, 59(23): 165-174.
[16] WAN Dahang, LU Rongsheng, SHEN Siyuan, et al. Mixed local channel attention for object detection[J].Engineering Applications of Artificial Intelligence, 2023, 123: 106442.
[17] WANG Hao, ABLAMEYKO S. Enhancing small object detection in remote sensing images using mixed local channel attention with YOLOv8[J]. Journal of Computer Technology and Applied Mathematics, 2024, 1(1): 40-45.
[18] WANG Qilong, WU Banggu, ZHU Pengfei, et al. ECA-net: Efficient channel attention for deep convolutional neural networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA. IEEE, 2020: 11531-11539.
[19] ZHENG Zhaohui, WANG Ping, LIU Wei, et al.Distance-IoU loss: Faster and better learning for bounding box regression[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12993-13000.
[20] HU Deao, YU Mei, WU Xianyong, et al. DGW-YOLOv8: A small insulator target detection algorithm based on deformable attention backbone and WIoU loss function[J]. IET Image Processing, 2023, 18(4): 1096-1108.
[21] 高良鹏, 赵博文, 简文良. 基于Faster-YOLOv8网络模型的车载交通标志检测算法研究[J]. 重庆交通大学学报(自然科学版), 2024, 43(8): 114-123.
GAO Liangpeng, ZHAO Bowen, JIAN Wenliang. Vehicle-mounted traffic sign detection algorithm based on faster-YOLOv8 network model[J]. Journal of Chongqing Jiaotong University(Natural Science), 2024, 43(8): 114-123.
[22] ZHANG Shifeng, XIE Yiliang, WAN Jun, et al. WiderPerson: A diverse dataset for dense pedestrian detection in the wild[J]. IEEE Transactions on Multimedia, 2020, 22(2): 380-393.
[23] DOLLAR P, WOJEK C, SCHIELE B, et al. Pedestrian detection: A benchmark[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, F L, USA, 2009: 304-311.
[24] OUYANG Wanli, ZENG Xingyu, WANG Xiaogang. Partial occlusion handling in pedestrian detection with a deep model[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 26(11): 2123-2137. |