中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

Journal of Chongqing Jiaotong University(Natural Science) ›› 2016, Vol. 35 ›› Issue (6): 141-147.DOI: 10.3969/j.issn.16740696.2016.06.29

• Traffic & Transportation Engineering • Previous Articles     Next Articles

Location Selection of LNG Powered Ship Bunkering Station in Main Line of Yangtze River

YANG Yongsheng, ZHOU Yamin, XU Bowei   

  1. (Logistics Research Centre,Institute of Logistics Science & Engineering, Shanghai Maritime University, Shanghai 201306, P.R.China)
  • Received:2015-06-23 Revised:2015-12-01 Online:2016-12-25 Published:2016-12-29

长江干线LNG动力船加注站选址研究

杨勇生,周亚民,许波桅   

  1. (上海海事大学 物流科学与工程研究院 物流研究中心,上海201306)
  • 作者简介:杨勇生(1965—),男,江西南昌人,教授,博士生导师,主要从事港口优化、物流装备自动化与智能控制、智能信息处理、智能机器人方面的研究。Email:yangys_smu@126.com。
  • 基金资助:
    高等学校博士学科点专项科研基金项目(20133121110005);上海市科委科技创新行动计划项目(14170501500);上海市科委自然科学基金项目(15ZR1420200);教育部人文社会科学研究青年基金项目(15YJC630145,15YJC630059);上海海事大学研究生创新基金项目(YXR2015038)

Abstract: Aiming at the location of LNG powered ship bunkering station in the main line of the Yangtze River, the improved ant colony algorithm (considering genetic variation) and the clustering analysis were combined. The clustering analysis can solve the problem of uncertainty and ambiguity in location selection, and the ant colony algorithm with genetic variation can effectively solve the problem of local optimal solution, due to the improper selection of the initial point in the traditional clustering analysis. The case studies show that comparing with the general ant colony clustering analysis, the ant colony clustering based on genetic variation shortens the number of iterations and reduces the amount of calculation; it is much closer to the global optimum, comparing with the traditional clustering analysis.

Key words: traffic and transportation engineering, LNG bunkering, main line of the Yangtze River, genetic variation, ant colony clustering, location problem

摘要: 针对长江干线LNG动力船加注站的选址问题,将改进(引入遗传变异)的蚁群算法和聚类分析进行结合,聚类分析可以解决选址问题中的不确定性和模糊性,而引入遗传变异的蚁群算法又可以有效地解决传统聚类分析因初始点选取不当易陷入局部最优解的问题。实例验证表明:基于遗传变异的蚁群聚类与普通蚁群聚类分析相比缩短了迭代次数,减少了计算量,与传统聚类分析相比更接近于全局最优。

关键词: 交通运输工程, LNG加注站, 长江干线, 遗传变异, 蚁群聚类, 选址问题

CLC Number: