中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

Journal of Chongqing Jiaotong University(Natural Science) ›› 2015, Vol. 34 ›› Issue (6): 128-132.DOI: 10.3969/j.issn.1674-0696.2015.06.24

• Transportation Engineering • Previous Articles     Next Articles

A Car-Following Model Based on Support Vector Machine

Qiu Xiaoping1,2,3, Liu Yalong1   

  1. 1. School of Transportation & Logistics, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; 2. Comprehensive Intelligent Transportation National & Local Joint Engineering Laboratory, Chengdu 610031, Sichuan, China; 3. Comprehensive Transportation Key Laboratory of Sichuan Province, Chengdu 610031, Sichuan, China
  • Received:2015-04-20 Revised:2015-07-08 Online:2015-12-30 Published:2015-12-29

基于支持向量机的车辆跟驰模型

邱小平1,2,3,刘亚龙1   

  1. 1. 西南交通大学 交通运输与物流学院,四川 成都 610031;2. 综合交通运输智能化国家地方联合工程实验室,四川 成都 610031;3. 综合运输四川省重点实验室,四川 成都 610031
  • 作者简介:邱小平(1976—),男,四川南充人,教授,工学博士,主要从事交通运输规划与管理方面的研究。E-mail: qxp@home.swjtu.edu.cn。
  • 基金资助:
    国家自然科学基金项目(51278429, 51408509);四川省科技厅项目(2013GZX0167, 2014ZR0091);中央高校基本业务经费项目(SWJTU11CX080); 成都市科技局项目(2014-RK00-00056-ZF)

Abstract: A car following model based on support vector machine algorithm was established to simulate the car-following behavior:acceleration, deceleration, no action. The SVM car-following model was trained and tested using Next Generation Simulation (NGSIM) data, and then the test results were compared with those obtained from Gipps car-following model. The results indicate that comparing with Gipps model, the accuracy of error indicators of the SVM car-following model is greatly improved; moreover, SVM car-following model can explore the potential correlationship between variables impacting car following behavior, which makes up for the deficiencies of the traditional car-following model.

Key words: traffic and transportation engineering, car-following model, machine learning, support vector machine, regression forecast

摘要: 基于支持向量机算法建立车辆跟驰模型,模拟单车道车辆跟驰行为——加速、减速、无动作;利用NGSIM数据对模型进行训练和测试,并与Gipps车辆跟驰模型的测试结果进行对比。结果表明:所建模型各项误差指标的精度均有较大提升,能够挖掘出影响跟驰行为的变量之间的潜在关系,弥补了传统车辆跟驰模型的不足。

关键词: 交通运输工程, 车辆跟驰模型, 机器学习, 支持向量机, 回归预测

CLC Number: