[1] PANGILINAN J M A, JANSSENS G. Evolutionary algorithms for the multi-objective shortest path problem[J]. International Journal of Applied Science, Engineering and Technology, 2007, 4(1): 205-210.
[2] GEN M, LIN L. Multi-objective genetic algorithm for solving network design problem[C]//Presented at the 20th Fuzzy Systems Symposium. Kitakyushu, Japan:[s.n.], 2004.
[3] KUMAR R, BANERJEE N. Multi-criteria network design using evolutionary algorithm[J]. Lecture Notes in Computer Science, 2003, 2724: 2179-2190.
[4] 潘斌斌. 多目标路径规划问题的算法综述[J]. 重庆工商大学学报(自然科学版),2012, 29(5): 78-83.
PAN Binbin. Review of the algorithms of multi-objective routing programming problems[J]. Journal of Industrial and Commercial University of Chongqing (Natural Science Edition), 2012, 29(5): 78-83.
[5] COUTINHO-RODRIGUES J M, CLIMACO J C N, CURRENT J R. An interactive bi-objective shortest path approach: Searching for unsupported non-dominated solutions[J]. Computers & Operations Research, 1999, 26(8): 789-798.
[6] GRANAT J, GUERRIERO F. The interactive analysis of the multi-criteria shortest path problem by the reference point method[J]. European Journal of Operational Research, 2003, 151(1): 103-118.
[7] GANDIBLEUX X, BEUGNIES F, RANDRIAMASY S. Martins algorithm revisited for multi-objective shortest path problems with a max-min cost function[J]. 4OR A Quarterly Journal of Operations Research, 2006, 4(1): 47-59.
[8] MLLER-HANNEMANN M, WEIHE K. Pareto shortest paths is often feasible in practice[J]. Lecture Notes in Computer Science, 2001, 2141: 185-198.
[9] IORI M, MARTELLO S, PRETOLANI D. An aggregate label setting policy for the multi-objective shortest path problem [J]. European Journal of Operational Research, 2010, 207(3): 1489-1496.
[10] MACHUCA E, MANDOW L, PREZ DE LA CRUZ J L, et al. A comparison of heuristic best-first algorithms for bi- criterion shortest path problems[J]. European Journal of Operational Research, 2012, 217(1): 44-53.
[11] 王维国, 宋阳, 郭多祚. 一种求解混合多目标规划问题的功效函数法[J]. 运筹与管理, 2007, 16( 4): 23-27.
WANG Weiguo, SONG Yang, GUO Duozuo. A new evaluation function method of solving vector hybridprogramming[J]. Operations Research and Management Science, 2007, 16(4): 23-27.
[12] 胡佳, 赵佳虹, 胡鹏. 考虑风险公平性的无能力约束条件下危险废物回收路径优化问题[J]. 交通运输工程与信息学报, 2104, 12(1): 55-61,114.
HU Jia, ZHAO Jiahong, HU Peng. Hazardous waste recovery route optimization considering risk equity without capacity constraints[J]. Journal of Transportation Engineering and Information, 2014, 12(1): 55-61, 114.
[13] 刘亚威,彭再云,谭远顺. 关于多目标规划问题绝对最优解、有效解、弱有效解间的关系[J]. 南京师大学报(自然科学版),2010 ,33(3): 19-21.
LIU Yawei, PENG Zaiyun, TAN Yuanshun. Some relations among absolutely optimal solutions, effective solutions and weakly effective solutions for multi-objective programming problem[J]. Journal of Nanjing Normal University (Natural Science Edition), 2010, 33(3): 19-21.
[14] 冯树民,吴海月,王弟鑫. 基于理想点法的多目标最短路求解算法研究[J]. 公路交通科技,2016,33(3): 97-101.
FENG Shumin, WU Haiyue, WANG Dixin. Study of multi-objective shortest path algorithm based on ideal point solution[J ]. Journal of Highway and Transportation Research and Development, 2016, 33(3): 97-101.
[15] 乔辰,张国立. 几何加权法求解多目标规划问题[J]. 华北电力大学学报, 2011, 38(6): 107-110.
QIAO Chen, ZHANG Guoli. Geometric weighting method for solving multi-objective programming problems[J]. Journal of North China Electric Power University, 2011, 38(6): 107-110. |