中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

Journal of Chongqing Jiaotong University(Natural Science) ›› 2021, Vol. 40 ›› Issue (01): 59-64.DOI: 10.3969/j.issn.1674-0696.2021.01.10

• Transport+Big Data and Artificial Intelligence • Previous Articles     Next Articles

Influence Mechanism of Information Risk on Operation Risk in Maritime Logistics

JIA Xiaohui1, ZHANG Donghui2   

  1. (School of Maritime and Economics Management, Dalian Maritime University, Dalian 116026, Liaoning, China; 2.College of Transportation Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China)
  • Received:2019-06-20 Revised:2019-08-19 Online:2021-01-11 Published:2021-01-11
  • Supported by:
     

海运物流信息风险对操作风险影响机理研究

贾晓惠1,张东辉2   

  1. (1. 大连海事大学 航运与经济管理学院,辽宁 大连 116026; 2. 大连海事大学 交通运输工程学院,辽宁 大连 116026)
  • 作者简介:贾晓惠(1968—),女,山西忻州人,副教授,博士,主要从事交通运输规划与管理、供应链管理、人力资源管理方面的研究。E-mail:xiaohuijia@dlmu.edu.cn
  • 基金资助:
     

Abstract: In order to investigate the influence mechanism of information risk on operation risk in maritime logistics, the data collection relevant to risk identification and risk frequency was carried out by literature review and questionnaire survey method respectively, and the association rule method based on soft set was used to mine the association between information risk and operation risk of maritime logistics. The research results show that information timeliness risk has a very strong effect on asset damage/loss risk; information security risk has a strong effect on merchandise damage/loss risk, asset damage/loss risk and personnel safety risk; information accuracy risk has a certain effect on the transportation delay risk and storage risk.

 

Key words: transportation engineering, information risk, operation risk, soft set theory, association rule, data mining

摘要: 为了探究海运物流中信息风险对操作风险的影响机理,通过文献梳理和问卷调查法分别进行相关风险识别和风险频率的数据收集,采用基于软集的关联规则方法对海运物流信息风险与操作风险之间的关联性进行挖掘。研究结果表明:信息及时性风险会对资产受损/丢失风险产生很强的影响;信息安全性风险会对货物受损/丢失风险、资产受损/丢失风险、人员安全风险产生较强的影响;信息准确性风险对运输延误风险、仓储风险会产生一定程度的影响。

关键词: 交通运输工程, 信息风险, 操作风险, 软集理论, 关联规则, 数据挖掘

CLC Number: