[1] WILLIAMS B M, HOEL L A. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: Theoretical basis and empirical results [J]. Journal of Transportation Engineering, 2003, 129(6): 664-672.
[2] HU Xiuwei, WU Zhiyong, SUN Yilong, et al. Multi-head attention spatio-temporal graph neural networks for traffic forecasting [J]. Research Square, 2023, 10(21):123-131.
[3] TA Xuxiang, LIU Zihan, HU Xiao, et al. Adaptive spatio-temporal graph neural network for traffic forecasting [J]. Knowledge-Based Systems, 2022, 242: 108199.
[4] ZHANG Wei, ZHU Fenghua, LV Yisheng, et al. AdapGL: An adaptive graph learning algorithm for traffic prediction based on spatiotemporal neural networks [J]. Transportation Research Part C: Emerging Technologies, 2022, 139: 103659.
[5] CHEN Lingqiang, SHI Pei, LI Guanghui, et al. Traffic flow prediction using multi-view graph convolution and masked attention mechanism [J]. Computer Communications, 2022, 194: 446-457.
[6] 尹宝才,王竟成,张勇,等.基于谱域超图卷积神经网络的交通流预测模型[J].北京工业大学学报,2024,50(2):152-164.
YIN Baocai, WANG Jingcheng, ZHANG Yong, et al. Traffic flow prediction model based on spectral domain hypergraph convolutional neural network [J]. Journal of Beijing University of Technology, 2024, 50(2): 152-164.
[7] GUO Shengnan, LIN Youfang, WAN Huaiyu, et al. Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting [J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 34(11): 5415-5428.
[8] MA Qiwei, SUN Wei, GAO Junbo, et al. Spatio-temporal adaptive graph convolutional networks for traffic flow forecasting[J]. IET Intelligent Transport Systems, 2023, 17(4): 691-703.
[9] 张阳,廖晓烨,杨书敏,等.一种结构优化的深度信任网络短时交通流预测[J].重庆交通大学学报(自然科学版),2023,42(11):126-133.
ZHANG Yan, LIAO Xiaoye, YANG Shumin, et al. Short-term traffic flow prediction with structure-optimized deep belief network [J]. Journal of Chongqing Jiaotong University (Natural Science), 2023, 42(11): 126-133.
[10] 汪维泰, 王晓强, 李雷孝等.时空图神经网络在交通流预测研究中的构建与应用综述[J].计算机工程与应用, 2023, 59(21):1-15
WANG Weitai, WANG Xiaoqiang, LI Leixiao, et al. A review of the construction and application of spatiotemporal graph neural networks in traffic flow prediction research [J]. Computer Engineering and Applications, 2023, 59(21):1-15.
[11] 邓涵优, 陈红梅, 肖清, 等. 基于多头注意力动态图卷积网络的交通流预测[J]. 太原理工大学学报, 2024, 55(1): 172-183.
DENG Hanyou, CHEN Hongmei, XIAO Qing, et al. Dynamic graph convolution network with multi-head attention for traffic flow prediction [J]. Journal of Taiyuan University of Technology, 2024, 55(1): 172-183. |