Journal of Chongqing Jiaotong University(Natural Science) ›› 2010, Vol. 29 ›› Issue (5): 832-836.
Previous Articles Next Articles
WANG Zheng-lun1, WANG Zhi-xiang2, ZHANG Xin1
Received:
Revised:
Online:
Published:
王正伦1, 王智祥2, 张鑫1
作者简介:
基金资助:
Abstract: With regard to the 2205 duplex stainless steel which is used for special shipbuilding in Chuandong Shipyard, BP neural network forecast models on welding residual stress and shrinkage deformation of 2205 duplex stainless steel ( DSS) have been respectively established, on the basis of the welding experiment of 2205 duplex stainless steel. The proposed forecast model is compared with the multiple linear regression method. The comparison indicates that the proposed forecast model can better simulate the non-linear relationships of welding residual stress and deformation between the process parameters, such as thickness, welding current, arc voltage and welding speed. The forecast results show that BP neural network is more advantageous both in the prediction accuracy and generalization capability than them ultiple linear regression method.
Key words: neural network, duplex stainless steel, welding, residual stress, forecast
摘要: 针对川东造船厂化学品船建造中使用特种钢——2205双相不锈钢(DSS),在其焊接试验的基础上分别建立 了双相不锈钢焊接应力和收缩变形的BP神经网络预测模型,并与多元线性回归方法进行比较,较好地模拟了焊接 残余应力和变形与板厚、焊接电流、电弧电压、焊接速度等工艺参数之间的非线性关系。预测结果表明,BP神经网 络比多元线性回归在预测精度和泛化能力上都有很大的提高。
关键词: 神经网络, 双相不锈钢, 焊接, 残余应力, 预测
CLC Number:
TG451
TP18
WANG Zheng-lun, WANG Zhi-xiang, ZHANG Xin. Prediction of DSS Welding Stress and Shrinkage Deformation Based on BP Neural Network[J]. Journal of Chongqing Jiaotong University(Natural Science), 2010, 29(5): 832-836.
王正伦, 王智祥, 张鑫. 基于BP神经网络的DSS焊接应力和收缩变形 预测研究[J]. 重庆交通大学学报(自然科学版), 2010, 29(5): 832-836.
0 / / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://xbzk.cqjtu.edu.cn/EN/
http://xbzk.cqjtu.edu.cn/EN/Y2010/V29/I5/832