中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

Journal of Chongqing Jiaotong University(Natural Science) ›› 2025, Vol. 44 ›› Issue (3): 96-104.DOI: 10.3969/j.issn.1674-0696.2025.03.13

• Transportation+Big Data & Artificial Intelligence • Previous Articles    

Nonlinear Effects of Weather and Built Environment on Passengers’ Bus Commuting Time

LI Xiaowei1, LIU Qian1, SHI Lanxin1,2, LI Haotian1, CHEN Jun1, SHI Zongqi3   

  1. (1. College of Urban Development and Modern Transportation, Xi’an University of Architecture and Technology, Xi’an 710055, Shaanxi, China; 2. School of Future Technology, South China University of Technology, Guangzhou 511442, Guangdong, China; 3. Henan Zhonggong Design & Research Group Co., Ltd., Zhengzhou 450003, Henan, China)
  • Received:2024-06-04 Revised:2024-09-12 Published:2025-03-31

天气和建成环境对乘客公交通勤时间的非线性影响

李晓伟1,刘倩1,石兰馨1,2,李昊田1,陈君1,时宗琦3   

  1. (1. 西安建筑科技大学 城市发展与现代交通学院,陕西 西安 710055; 2.华南理工大学 未来技术学院,广东 广州 511442; 3. 河南省中工设计研究院集团股份有限公司,河南 郑州 450003)
  • 作者简介:李晓伟(1985—),男,河南信阳人,副教授,博士,主要从事交通大数据和人工智能方面的研究。E-mail:lixiaowei@xauat.edu.cn 通信作者:陈君(1977—),男,陕西平利人,教授,博士,主要从事智慧交通方面的研究。E-mail:chenjuntom@126.com
  • 基金资助:
    国家自然科学基金项目(52472367); 西安建筑科技大学新型城镇化专项研究基金项目(2023SCZH18); 西安建筑科技大学与西安建大城市规划设计研究院有限公司合作研究课题项目(X20240059)

Abstract: Revealing the mechanism of the influence of built environment and weather on passengers’ bus commuting time is the key to optimize passengers’ commuting time and improve bus sharing rate. Taking Weinan city in Shaanxi as an example, the variables such as passengers’ commuting time during evening peak hours, weather, and the built environment of the origin and destination were extracted through the fusion and mining of multiple sources of spatiotemporal big data. The CatBoost model and SHAP were used to analyze the feature importance and nonlinearity influence of the built environment and the weather on passengers’ bus commuting time during the evening peak hours. The research results show that CatBoost model has good fitting and prediction performance, which is significantly better than XGBoost, KNN, LR and Bayesian Ridge. The significance influencing factors in descending order are: origin science and education density, origin residential density, destination life service density, origin diversity, origin road density, destination residential density, destination diversity, temperature, and precipitation. Among them, the residential density of origin and destination, origin diversity, origin road density have a significant negative impact on the commuting time of passengers during the evening rush hour, while the increase of destination diversity and the rise of the temperature will potentially increase the bus commuting time of passengers during the evening rush hour. The origin science and education density, destination life service density have a significant nonlinear influence on the commuting time of residents.

Key words: traffic and transportation engineering; urban traffic; nonlinearity; CatBoost; SHAP; bus commuting time; built environment

摘要: 揭示建成环境和天气对乘客公交通勤时间的影响机理是本源性优化乘客通勤时间、提升公交分担率的关键。以陕西省渭南市为例,通过多源时空大数据的融合与挖掘,提取乘客晚高峰公交通勤时间、天气和起终点建成环境变量,应用CatBoost(category boosting)模型和SHAP(shapley additive explanation)解析天气和起终点建成环境对乘客晚高峰公交通勤时间的特征重要度和非线性影响。研究结果表明:CatBoost模型具有很好的拟合和预测性能,明显优于XGBoost、KNN、LR和Bayesian Ridge模型;显著性影响因素依次为,起点科教密度、起点居住密度、终点生活服务密度、起点多样性、起点道路密度、终点居住密度、终点多样性、温度和降水;其中,起终点居住密度、起点多样性、起点道路密度对乘客晚高峰公交通勤时间有显著的负向影响,而终点多样性的增加以及温度的上升会潜在增加乘客晚高峰公交通勤时间;起点科教密度、终点生活服务密度对通勤时间有显著的非线性影响。

关键词: 交通运输工程;城市交通;非线性;CatBoost;SHAP;公交通勤时间;建成环境

CLC Number: